 Research
 Open access
 Published:
Secondorder impulsive differential systems with mixed and several delays
Advances in Difference Equations volumeÂ 2021, ArticleÂ number:Â 318 (2021)
Abstract
In this work, we present new necessary and sufficient conditions for the oscillation of a class of secondorder neutral delay impulsive differential equations. Our oscillation results complement, simplify and improve recent results on oscillation theory of this type of nonlinear neutral impulsive differential equations that appear in the literature. An example is provided to illustrate the value of the main results.
1 Introduction
Nowadays impulsive differential equations are attracting a lot of attention. They appear in the study of several real world problems (see, for instance, [1â€“3]). In general, it is well known that several natural phenomena are driven by differential equations. However, the description of some real world problems requires studies on systems of differential equations with impulses, a subject very interesting from a mathematical point of view. Examples of the aforementioned phenomena are related to mechanical systems, biological systems, population dynamics, pharmacokinetics, theoretical physics, biotechnology processes, chemistry, engineering, control theory (we also stress that in the modeling of these phenomena is suitably formulated by evolutive partial differential equations and, moreover, moment problem approaches appear also as a natural instrument in control theory of neutral type systems; see [4â€“6] and [7], respectively).
The literature related to impulsive differential equations is very wide. Here we mention some recent developments in this field.
In [8], Shen and Wang considered impulsive differential equations of the following form:
where \(r\in C(\mathbb{R},\mathbb{R})\) and \(I_{k}\in C(\mathbb{R},\mathbb{R})\) for \(k\in \mathbb{N}\), and obtained sufficient conditions that ensure the oscillation and the asymptotic behaviour of the solutions of the problem (1).
In [9], Graef et al. considered the problem
assuming that \(q(\iota )\in PC([\iota _{0},\infty ),\mathbb{R}_{+})\) (that is, \(q(\iota )\) is piecewise continuous in \([\iota _{0},\infty )\)), obtained sufficient conditions for the oscillation of the solutions of the problem (2).
In [10], Shen and Zou obtained oscillation criteria for firstorder impulsive neutral delay differential equations of the form
obtaining sufficient conditions that ensure the oscillation of the solutions of (3) under the assumptions that \(q(\iota )\in PC([\iota _{0},\infty ),\mathbb{R}_{+})\) and \(b_{k}\leq \frac{I_{k}(u)}{u}\leq 1\).
Karpuz et al. in [11] extended the results contained in [10] by taking the nonhomogeneous counterpart of the system (3) with variable delays.
Oscillation and nonoscillation properties for a class of secondorder neutral impulsive differential equations with constant coefficients and constant delays were studied by Tripathy and Santra in [12], where the authors considered the problem
Other necessary and sufficient conditions for the oscillation of a class of secondorder neutral impulsive systems were established in [13], where Tripathy and Santra studied systems of the form
In [13], in particular, the authors are interested with oscillating systems that, after a perturbation by instantaneous change of state, remain oscillating.
In [14], Santra and Tripathy investigated the oscillatory behaviour of the solutions for firstorder impulsive neutral delay differential equations of the form
for different values of the neutral coefficient q.
We also mention Ref. [15] in which Santra and Dix, using Lebesgueâ€™s dominated convergence theorem, obtained necessary and sufficient conditions for the oscillation of the solutions of the following secondorder neutral differential equations with impulses:
where
In line with the contents of [15], Tripathy and Santra in [16] examined oscillation and nonoscillation properties for the solutions of the following class of forced impulsive nonlinear neutral differential systems:
for different values of \(q(\iota )\) and obtained sufficient conditions for the existence of positive bounded solutions of system (8).
Finally we mention recent work [17] in which Tripathy and Santra obtained some characterizations for the oscillation of solutions of the following secondorder neutral impulsive differential system:
where \(w(\iota )=u(\iota )+q(\iota )u(\zeta (\iota ))\) and \(1< q(\iota )\leq 0\).
For further details on neutral impulsive differential equations and for recent results related to the oscillation theory for ordinary differential equations, we refer the reader to Refs. [18â€“43] and to the references therein. In particular, the study of oscillation of halflinear/Emdenâ€“Fowler (neutral) differential equations with deviating arguments (delayed or advanced arguments or mixed arguments) has numerous applications in physics and engineering (e.g., halflinear/Emdenâ€“Fowler differential equations arise in a variety of real world problems such as in the study of pLaplace equations and in chemotaxis models); see, e.g., Refs. [4, 34â€“37, 39, 40, 42, 43] for more details. In particular, by using different methods, the following work was concerned with the oscillation of various classes of halflinear/Emdenâ€“Fowler differential equations and halflinear/Emdenâ€“Fowler differential equations with different neutral coefficients (e.g., Ref. [33] was concerned with neutral differential equations assuming that \(0\leq q(\iota )<1\) and \(q(\iota )>1\); Ref. [34] was concerned with neutral differential equations assuming that \(0\leq q(\iota )<1\); Ref. [36] was concerned with neutral differential equations assuming that \(q(\iota )\) is nonpositive; Rewfs. [37, 41] were concerned with neutral differential equations in the case where \(q(\iota )>1\); Ref. [40] was concerned with neutral differential equations assuming that \(0\leq q(\iota )\leq q_{0}<\infty \) and \(q(\iota )>1\); Ref. [42] was concerned with neutral differential equations in the case where \(0\leq q(\iota )\leq q_{0}<\infty \); Ref. [43] was concerned with neutral differential equations in the case when \(0\leq q(\iota )= q_{0}\neq 1\); whereas Ref. [39] was concerned with differential equations with a nonlinear neutral term assuming that \(0\leq q(\iota )\leq a<1\)), which has the same research topic as that of this paper.
Motivated by the aforementioned findings, in this paper we prove necessary and sufficient conditions for the oscillation of solutions to a secondorder nonlinear impulsive differential system in the form
where
the functions \(r_{j}\), \(\tilde{r}_{j}\), p, q, \(\nu _{j}\), Î¶ are continuous that satisfy the conditions stated now;

(a)
\(\nu _{j}\in C([0,\infty ),\mathbb{R})\), \(\zeta \in C^{2}([0,\infty ),\mathbb{R})\), \(\nu _{j}(\iota )<\iota \), \(\zeta (\iota )<\iota \), \(\lim_{\iota \to \infty }\nu _{j}(\iota )=\infty \), \(\lim_{\iota \to \infty }\zeta (\iota )=\infty \).

(b)
\(\nu _{j}\in C([0,\infty ),\mathbb{R})\), \(\zeta \in C^{2}([0,\infty ),\mathbb{R})\), \(\nu _{j}(\iota )>\iota \), \(\zeta (\iota )<\iota \), \(\lim_{\iota \to \infty }\zeta (\iota )=\infty \).

(c)
\(p\in C^{1}([0,\infty ),\mathbb{R})\), \(r_{j},\tilde{r}_{j}\in C([0,\infty ),\mathbb{R})\); \(0< p(\iota )\), \(0\leq r_{j}(\iota )\), \(0\leq \tilde{r}_{j}(\iota )\), for all \(\iota \geq 0\) and \(j=1,2,\dots ,m\); \(\sum r_{j}(\iota )\) is not identically zero in any interval \([b,\infty )\).

(d)
\(q\in C^{2}([0,\infty ),\mathbb{R_{+}})\) with \(0\leq q(\iota )\leq a<1\).

(e)
\(\lim_{\iota \to \infty }P(\iota )=\infty \) where \(P(\iota )=\int _{0}^{\iota }p^{1/\alpha }(s) \,\mathrm{d}s\).

(f)
Î± and Î² are the quotients of two positive odd integers and the sequence \(\{\phi _{k}\}\) satisfies \(0<\phi _{1}<\phi _{2}<\cdots <\phi _{k}\to \infty \) as \(k\to \infty \).
2 Preliminary results
To make our notations simpler, we set
Lemma 2.1
Suppose (a)â€“(f) hold for \(\iota \geq \iota _{0}\), and u is an eventually positive solution of (10)â€“(11). Then w satisfies
Proof
Let u be an eventually positive solution. Then \(w(\iota )>0\) and there exists \(\iota _{0}\geq 0\) such that \(u(\iota )>0\), \(u(\nu _{j}(\iota ))>0\), \(u(\zeta (\iota ))>0\) for all \(\iota \geq \iota _{0}\) and \(j=1,2,\dots ,m\). Then (10)â€“(11) gives
which shows that \(p(\iota ) (w'(\iota ) )^{\alpha }\) is nonincreasing for \(\iota \geq \iota _{0}\), including jumps of discontinuity. Next we claim that, for \(w>0\), \(p(\iota ) (w'(\iota ) )^{\alpha }\) is positive for \(\iota \geq \iota _{1}>\iota _{0}\). If not, letting \(p(\iota ) (w'(\iota ) )^{\alpha }\leq 0\) for \(\iota \geq \iota _{1}\), we can choose \(c>0\) such that
that is,
Integrating both sides from \(\iota _{1}\) to Î¹ we get
Taking the limit in both sides as \(\iota \to \infty \), we have \(\lim_{\iota \to \infty }w(\iota )\leq \infty \), that is, \(w(\iota )\leq 0\) which leads to a contradiction to \(w(\iota )>0\). Hence, \(p(\iota ) (w'(\iota ) )^{\alpha }>0\) for \(\iota \geq \iota _{1}\) i.e., \(w'(\iota )>0\) for \(\iota \geq \iota _{1}\). This completes the proof.â€ƒâ–¡
Lemma 2.2
Suppose (a)â€“(f) hold for \(\iota \geq \iota _{0}\), and u is an eventually positive solution of (10)â€“(11). Then w satisfies
Proof
Assume that u is an eventually positive solution of (10)â€“(11). Then \(w(\iota )>0\) and there exists \(\iota \geq \iota _{1}>\iota _{0}\) such that
Hence w satisfies (14) for \(\iota \geq \iota _{1}\).â€ƒâ–¡
Remark 2.1
The above two lemmas hold for any \(\alpha >\beta \) or \(\alpha <\beta \).
3 Main results
Theorem 3.1
Let (b)â€“(f) hold for \(\iota \geq \iota _{0}\) and \(\beta > \alpha \). Then every solution of (10)â€“(11) is oscillatory if and only if
Proof
Let u be an eventually positive solution of (10)â€“(11). Then \(w(\iota )>0\) and there exists \(\iota _{0}\geq 0\) such that \(u(\iota )>0\), \(u(\nu _{j}(\iota ))>0\), \(u(\zeta (\iota ))>0\) for all \(\iota \geq \iota _{0}\) and \(j=1,2,\dots ,m\). Thus, Lemmas 2.1 and 2.2 hold for \(\iota \geq \iota _{1}\). By LemmaÂ 2.1, there exists \(\iota _{2}>\iota _{1}\) such that \(w'(\iota )>0\) for all \(\iota \geq \iota _{2}\). Then there exist \(\iota _{3}>\iota _{2}\) and \(c>0\) such that \(w(\iota )\geq c\) for all \(\iota \geq \iota _{3}\). Next using LemmaÂ 2.2, we get \(u(\iota )\geq (1a)w(\iota )\) for all \(\iota \geq \iota _{3}\) and (10)â€“(11) become
Integrating (16) from Î¹ to âˆž we get
Note that \(p(\iota ) (w'(\iota ) )^{\alpha }\) is positive and nondecreasing. So, \(\lim_{\iota \to \infty } p(\iota ) (w'(\iota ) )^{\alpha }\) finitely exists and is positive. Therefore,
that is,
Using (b) and the fact that \(w(\iota )\) is nondecreasing,
that is,
By integrating over \(\iota _{3}\) and âˆž both side, we have
due to \(\beta >\alpha \), which is a contradiction to (15) and hence the sufficient part of the theorem is proved.
Next we prove necessary part by contrapositive argument. If (15) does not hold, then for every \(\varepsilon >0\) there exists \(\iota \geq \iota _{0}\) for which
where \(2\varepsilon = [\frac{1}{1a} ]^{\beta /\alpha }>0\). Let us define a set
and \(\Phi : V\rightarrow V\) as
Next, we prove \((\Phi u)(\iota )\in V\). For \(u(\iota )\in V\),
and further, for \(u(\iota )\in V\),
Hence Î¦ maps V into V.
Now we are going to find a fixed point for Î¦ in V which will give an eventually positive solution of (10)â€“(11).
First we define a sequence of functions in V by
Here we see \(u_{1}(\iota )\geq u_{0}(\iota )\) for each fixed Î¹ and \(\frac{1}{2}\leq u_{n1}(\iota )\leq u_{n}(\iota )\leq \frac{1}{1a}\), \(\iota \geq T\) for all \(n\geq 1\). Thus \({u_{n}}\) converges pointwise to a function u. By Lebesgueâ€™s dominated convergence theorem u is a fixed point of Î¦ in V, which shows that there has a nonoscillatory solution. This completes the proof the theorem.â€ƒâ–¡
Theorem 3.2
Let (a), (c)â€“(f) hold for \(\iota \geq \iota _{0}\) and \(\beta < \alpha \). Then every solution of (10)â€“(11) is oscillatory if and only if
Proof
Let \(u(\iota )\) be an eventually positive solution of (10)â€“(11). Then, proceeding as in the proof of TheoremÂ 3.1 we have \(\iota _{2}>\iota _{1}>\iota _{0}\) such that (17) holds for all \(\iota \geq \iota _{2}\). Using (e), there exists \(\iota _{3}>\iota _{2}\) for which \(P(\iota )P(\iota _{3})\geq \frac{1}{2} P(\iota )\) for \(\iota \geq \iota _{3}\). Integrating (17) from \(\iota _{3}\) to Î¹, we have
that is,
Hence,
where
Now,
and
which shows that \(U(\iota )\) is nonincreasing on \([\iota _{4},\infty )\) and \(\lim_{\iota \to \infty }U(\iota )\) exists. Using (20) and (a), we find
To estimate the discontinuity of \(U^{1\beta /\alpha }\), we use the firstorder Taylor polynomial approximation \(h(u)=u^{1\beta /\alpha }\), with \(0<\beta <\alpha \) and \(u=a\):
Then
Integrating (22) from \(\iota _{3}\) to Î¹ we have
that is,
which contradicts (18). This completes the proof the theorem.â€ƒâ–¡
Example 3.1
Consider the neutral differential equations
Here \(\alpha = 1/3\), \(p(\iota )=1\), \(0< q(\iota )=e^{\iota }<1\), \(\nu _{j}(\iota )=\iota (j+1)\), \(\phi _{k}=3^{k}\) for \(k \in \mathbb{N}\) with index \(j=1,2\). For \(\beta =5/3\), we have \(\beta =5/3>\alpha =1/3\). To check (15) we have
So, all the conditions of TheoremÂ 3.1 hold. Thus, each solution of (23)â€“(24) is oscillatory.
Example 3.2
Consider the neutral differential equations
Here \(\alpha = 11/3\), \(p(\iota )=e^{\iota }\), \(0< q(\iota )=e^{\iota }<1\), \(\nu _{j}(\iota )=\iota (j+1)\), \(\phi _{k}=k\) for \(k \in \mathbb{N}\) with index \(j=1,2\), \(P(\iota )= \int _{0}^{\iota }e^{3s/11} \,ds=\frac{11}{3}(e^{3\iota /11}1)\). For \(\beta =7/3\), we have \(\beta =7/3<\alpha =11/3\). To check (18) we have
So, all the conditions of TheoremÂ 3.2 hold, and therefore, each solution of (25)â€“(26) is oscillatory.
4 Conclusions
In this work, we studied secondorder highly nonlinear neutral impulsive differential systems and established necessary and sufficient conditions for the oscillation of (10)â€“(11) when the neutral coefficient lies in \([0, 1)\). It would be of interest to examine the oscillation of (10)â€“(11) with different neutral coefficients; see, e.g., Refs. [33, 36, 37, 40â€“43] for more details. Furthermore, it is also interesting to analyze the oscillation of (10)â€“(11) with a nonlinear neutral term; see, e.g., Ref. [39] for more details.
Availability of data and materials
Not applicable.
References
Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Asymptotic Properties of the Solutions. Series on Advances in Mathematics for Applied Sciences, vol.Â 28. World Scientific, Singapore (1995)
Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Oscillation Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
Agarwal, R.P., Oâ€™Regan, D., Saker, S.H.: Oscillation and Stability of Delay Models in Biology. Springer, New York (2014)
Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 70(3), Art. 86, 1â€“18 (2019)
Li, T., Viglialoro, G.: Boundedness for a nonlocal reaction chemotaxis model even in the attractiondominated regime. Differ. Integral Equ. 34(5â€“6), 315â€“336 (2021)
Viglialoro, G., Woolley, T.E.: Solvability of a KellerSegel system with signaldependent sensitivity and essentially sublinear production. Appl. Anal. 99(14), 2507â€“2525 (2020)
Infusino, M., Kuhlmann, S.: Infinite dimensional moment problem: open questions and applications. In: Contemp. Math., vol.Â 697, pp.Â 187â€“201. Am. Math. Soc., Providence (2017)
Shen, J.H., Wang, Z.C.: Oscillation and asympotic behaviour of solutions of delay differential equations with impulses. Ann. Differ. Equ. 10(1), 61â€“68 (1994)
Graef, J.R., Shen, J.H., Stavroulakis, I.P.: Oscillation of impulsive neutral delay differential equations. J. Math. Anal. Appl. 268, 310â€“333 (2002)
Shen, J., Zou, Z.: Oscillation criteria for first order impulsive differential equations with positive and negative coefficients. J. Comput. Appl. Math. 217, 28â€“37 (2008)
Karpuz, B., Ocalan, O.: Oscillation criteria for a class of firstorder forced differential equations under impulse effects. Adv. Dyn. Syst. Appl. 7(2), 205â€“218 (2012)
Tripathy, A.K., Santra, S.S.: Characterization of a class of secondorder neutral impulsive systems via pulsatile constant. Differ. Equ. Appl. 9(1), 87â€“98 (2017)
Tripathy, A.K., Santra, S.S.: Necessary and sufficient conditions for oscillation of a class of secondorder impulsive systems. Differ. Equ. Dyn. Syst. (2018). https://doi.org/10.1007/s1259101804257
Santra, S.S., Tripathy, A.K.: On oscillatory first order nonlinear neutral differential equations with nonlinear impulses. J. Appl. Math. Comput. 59, 257â€“270 (2019). https://doi.org/10.1007/s1219001811788
Santra, S.S., Dix, J.G.: Necessary and sufficient conditions for the oscillation of solutions to a secondorder neutral differential equation with impulses. Nonlinear Stud. 27(2), 375â€“387 (2000)
Tripathy, A.K., Santra, S.S.: On the forced impulsive oscillatory nonlinear neutral systems of the secondorder. Nonlinear Oscil. 23(2), 274â€“288 (2020)
Tripathy, A.K., Santra, S.S.: Necessary and sufficient conditions for oscillations to a secondorder neutral differential equations with impulses. Kragujev. J. Math. 47(1), 81â€“93 (2023)
Santra, S.S., Ghosh, T., Bazighifan, O.: Explicit criteria for the oscillation of secondorder differential equations with several sublinear neutral coefficients. Adv. Differ. Equ. 2020, 643 (2020)
Santra, S.S., Dassios, I., Ghosh, T.: On the asymptotic behavior of a class of secondorder nonlinear neutral differential equations with multiple delays. Axioms 9, 134 (2020)
Santra, S.S., Majumder, D., Bhattacharjee, R., Bazighifan, O., Khedher, K., Marin, M.: New theorems for oscillations to the differential equations with mixed delays. Symmetry 13, 367 (2021)
Santra, S.S., Bazighifan, O., Ahmad, H., Chu, Y.M.: Secondorder differential equation: oscillation theorems and applications. Math. Probl. Eng. 2020, 8820066 (2020)
Santra, S.S., Bazighifan, O., Ahmad, H., Yao, S.W.: Secondorder differential equation with multiple delays: oscillation theorems and applications. Complexity 2020, 8853745 (2020)
Bazighifan, O., Ruggieri, M., Scapellato, A.: An improved criterion for the oscillation of fourthorder differential equations. Mathematics 8(4), 610 (2020)
Bazighifan, O., Ruggieri, M., Santra, S.S., Scapellato, A.: Qualitative properties of solutions of secondorder neutral differential equations. Symmetry 12(9), 1520 (2020)
Berezansky, L., Braverman, E.: Oscillation of a linear delay impulsive differential equations. Commun. Appl. Nonlinear Anal. 3, 61â€“77 (1996)
Diblik, J., Svoboda, Z., Smarda, Z.: Retract principle for neutral functional differential equation. Nonlinear Anal., Theory Methods Appl. 71(12), 1393â€“1400 (2009)
Santra, S.S., Alotaibi, H., Bazighifan, O.: On the qualitative behavior of the solutions to secondorder neutral delay differential equations. J. Inequal. Appl. 2020, 256 (2020)
Diblik, J.: Positive solutions of nonlinear delayed differential equations with impulses. Appl. Math. Lett. 72, 16â€“22 (2017)
Luo, Z., Jing, Z.: Periodic boundary value problem for firstorder impulsive functional differential equations. Comput. Math. Appl. 55, 2094â€“2107 (2008)
Yu, J., Yan, J.: Positive solutions and asymptotic behavior of delay differential equations with nonlinear impulses. J. Math. Anal. Appl. 207, 388â€“396 (1997)
Tripathy, A.K.: Oscillation criteria for a class of first order neutral impulsive differentialdifference equations. J. Appl. Anal. Comput. 4, 89â€“101 (2014)
Berezansky, L., Domoshnitsky, A., Koplatadze, R.: Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations. Chapman & Hall, Boca Raton (2020)
Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: A new approach in the study of oscillatory behavior of evenorder neutral delay differential equations. Appl. Math. Comput. 225, 787â€“794 (2013)
Agarwal, R.P., Zhang, C., Li, T.: Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 274, 178â€“181 (2016)
Bohner, M., Hassan, T.S., Li, T.: Fiteâ€“Hilleâ€“Wintnertype oscillation criteria for secondorder halflinear dynamic equations with deviating arguments. Indag. Math. 29(2), 548â€“560 (2018)
Bohner, M., Li, T.: Oscillation of secondorder pLaplace dynamic equations with a nonpositive neutral coefficient. Appl. Math. Lett. 37, 72â€“76 (2014)
Chatzarakis, G.E., Grace, S.R., JadlovskÃ¡, I., Li, T., TunÃ§, E.: Oscillation criteria for thirdorder Emdenâ€“Fowler differential equations with unbounded neutral coefficients. Complexity 2019, Article ID 5691758 (2019)
Chiu, K.S., Li, T.: Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments. Math. Nachr. 292(10), 2153â€“2164 (2019)
DÅ¾urina, J., Grace, S.R., JadlovskÃ¡, I., Li, T.: Oscillation criteria for secondorder Emdenâ€“Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 293(5), 910â€“922 (2020)
Li, T., Rogovchenko, Yu.V.: Oscillation of secondorder neutral differential equations. Math. Nachr. 288(10), 1150â€“1162 (2015)
Li, T., Rogovchenko, Yu.V.: Oscillation criteria for evenorder neutral differential equations. Appl. Math. Lett. 61, 35â€“41 (2016)
Li, T., Rogovchenko, Yu.V.: Oscillation criteria for secondorder superlinear Emdenâ€“Fowler neutral differential equations. Monatshefte Math. 184(3), 489â€“500 (2017)
Li, T., Rogovchenko, Yu.V.: On the asymptotic behavior of solutions to a class of thirdorder nonlinear neutral differential equations. Appl. Math. Lett. 105, 1â€“7 (2020)
Acknowledgements
Khaled Mohamed Khedher would like to thank the Deanship of Scientific Research at King Khalid University for funding this work through the large research groups under grant number RGP.1/372/42. (Taher A. Nofal) Taif University Researchers Supporting Project number (TURSP2020/031), Taif University, Taif, Saudi Arabia. We would like to thank reviewers for their careful reading and valuable comments that helped correcting and improving the paper. The authors thank the editors and the reviewers for their useful comments.
Authorsâ€™ information
Not applicable.
Funding
This research work was supported by the Deanship of Scientific Research at King Khalid University under Grant number RGP. 1/372/42.
Author information
Authors and Affiliations
Contributions
The authors declare that they have read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the articleâ€™s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the articleâ€™s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Santra, S.S., Ghosh, A., Bazighifan, O. et al. Secondorder impulsive differential systems with mixed and several delays. Adv Differ Equ 2021, 318 (2021). https://doi.org/10.1186/s1366202103474x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s1366202103474x