- Research
- Open Access
- Published:
A new aspect of generalized integral operator and an estimation in a generalized function theory
Advances in Difference Equations volume 2021, Article number: 357 (2021)
Abstract
In this paper we investigate certain integral operator involving Jacobi–Dunkl functions in a class of generalized functions. We utilize convolution products, approximating identities, and several axioms to allocate the desired spaces of generalized functions. The existing theory of the Jacobi–Dunkl integral operator (Ben Salem and Ahmed Salem in Ramanujan J. 12(3):359–378, 2006) is extended and applied to a new addressed set of Boehmians. Various embeddings and characteristics of the extended Jacobi–Dunkl operator are discussed. An inversion formula and certain convergence with respect to δ and Δ convergences are also introduced.
1 Introduction and preliminaries
We start with some background and notations from the Jacobi–Dunkl function theory, supplementing the material in the Introduction. We recapitulate some results related to the harmonic analysis associated with the Jacobi–Dunkl differential-difference operator \(\Delta _{\alpha,\beta }\) and the Jacobi–Dunkl kernel function \(\Psi _{\lambda }^{\alpha,\beta }\). We denote by \(\mathbb{C}, \mathbb{R}\), and \(\mathbb{N} \) the sets of complex numbers, real numbers, and positive integers, respectively. For \(\alpha,\beta \in \mathbb{R},\alpha \geq \beta \geq -\frac{1}{2}\), and \(\alpha \neq -\frac{1}{2}\), we denote by \(\Delta _{\alpha,\beta }\) the Jacobi–Dunkl differential-difference operator defined by [1]
For \(\lambda ^{2}=\mu ^{2}+\rho ^{2},\lambda \in \mathbb{C},\zeta \in \mathbb{R} \), and \(\rho =\alpha +\beta +1\), we denote by \(\Psi _{\lambda }^{\alpha,\beta }\) the Jacobi–Dunkl kernel function [1]
Then the Jacobi–Dunkl kernel function \(\Psi _{\lambda }^{\alpha,\beta }\) is the \(C^{\infty }\)-solution of the differential-difference equation
where \(\varphi _{\mu }^{\alpha,\beta }\) is the Jacobi function defined by
F being a Gauss hypergeometric function. For \(\alpha \geq \beta \geq -\frac{1}{2}\) and \(\lambda \in \mathbb{C}\), the function \(\Psi _{\lambda }^{\alpha,\beta }\) is an eigenfunction of the differential-difference operator \(\Delta _{\alpha,\beta }\) that satisfies the product formula [1, (2.10)]
where
and
\(1_{I_{\zeta,y}}\) being the indicator of \(I_{\zeta,y}= [ - \vert \zeta \vert - \vert y \vert ,- \vert \vert \zeta \vert - \vert y \vert \vert U [ \vert \vert \zeta \vert - \vert y \vert \vert , \vert \zeta \vert + \vert y \vert ] ] \), \(\gamma ^{z} ( \zeta,y,u ) =1-\sigma _{\zeta,y,u}^{z}+ \sigma _{u,y,\zeta }^{z}+\sigma _{u,\zeta,y}^{z}\), and
\(M_{\alpha,\beta }\) being the classical function given by [1, (1.15)]. We denote by D the set of \(C^{\infty }\)-functions whose supports over \(\mathbb{R}\) are bounded. By \(L_{\alpha,\beta }^{1} ( \mathbb{R},X_{\alpha,\beta } ( \zeta ) \,d\zeta ) \), or \(L_{\alpha,\beta }^{1}\), we denote the measurable space of functions over \(\mathbb{R}\) that satisfies the norms [2]
where
The convolution product of the arbitrary functions \(\psi _{1}\) and \(\psi _{2}\) is defined by [1, Def. (3.1)]
where \(T_{\alpha,\beta }^{\zeta },\zeta \in \mathbb{R} \), is the transformation operator defined by [1, Def. (2.8)]
However, the product \(\ast _{\alpha,\beta }\) of the suitable functions \(\psi _{1}\) and \(\psi _{2}\) satisfies several results as follows [1, p. 375].
Proposition 1
Let \(\psi _{1},\psi _{2},\psi _{3}\in L_{\alpha,\beta }^{1} ( \mathbb{R},X_{\alpha,\beta } ( \zeta ) \,d\zeta ) \). Then the undermentioned relations hold true.
-
(i)
\(\psi _{1}\ast _{\alpha,\beta }\psi _{2}=\psi _{2} \ast _{\alpha,\beta }\psi _{1}\),
-
(ii)
\(( \psi _{1}\ast _{\alpha,\beta } \psi _{2} ) \ast _{\alpha,\beta }\psi _{3}=\psi _{1}\ast _{ \alpha,\beta } ( \psi _{2}\ast _{\alpha,\beta }\psi _{3} )\).
Consequently, for \(p=q=r=1\), [1, Prop. (3.2)] leads to the following fruitful result.
Proposition 2
Let \(\psi _{2},\psi _{1}\in L_{\alpha,\beta }^{1} ( \mathbb{R},X_{ \alpha,\beta } ( \zeta ) \,d\zeta ) \). Then the following hold:
-
(i)
\(T_{\alpha,\beta }^{x}\) is defined a.e. on \(\mathbb{R}\). Moreover, it is a member of \(L_{\alpha,\beta }^{1} ( \mathbb{R},X_{\alpha,\beta } ( \zeta ) \,d\zeta ) \) and
$$\begin{aligned} \bigl\Vert T_{\alpha,\beta }^{\zeta }\psi _{1} \bigr\Vert _{ \alpha,\beta }\leq 4 \Vert \psi _{1} \Vert _{\alpha, \beta }. \end{aligned}$$ -
(ii)
\(\psi _{1}\ast _{\alpha,\beta }\psi _{2}\in L_{ \alpha,\beta }^{1} ( \mathbb{R},X_{\alpha,\beta } ( \zeta ) \,d\zeta ) \), and
$$\begin{aligned} \Vert \psi _{1}\ast _{\alpha,\beta }\psi _{2} \Vert _{ \alpha,\beta }\leq 4 \Vert \psi _{1} \Vert _{\alpha, \beta } \Vert \psi _{2} \Vert _{\alpha,\beta }. \end{aligned}$$
The Jacobi–Dunkl operator for a suitable function \(\psi _{1} \) is defined over \(\mathbb{R}\) by [1, Def. 3.3]
Moreover, for \(\psi _{2},\psi _{1}\in L_{\alpha,\beta }^{1} ( \mathbb{R},X_{\alpha,\beta } ( \zeta ) \,d\zeta ) \) and \(\lambda \in \mathbb{R} \), Prop. (3.6) of [1, p. 376] reveals
The Plancherel formula for the \(J_{\alpha,\beta }^{d}\) transform is defined as
where
is the Plancherel measure [1, p. 376]. For more illustrations about this theory, readers are referred to [1–4, 41, 43] and [5–20] and the references cited therein. However, this research is organized in the following format. In Sect. 1, we present some definitions and results associated with the Jacobi–Dunkl function theory. In Sect. 2, we establish the generalized spaces \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \) and \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times,\bar{\Delta } ) \). In Sect. 3, we extend the Jacobi–Dunkl function theory to the generalized spaces of generalized functions.
2 The spaces \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \) and \(B ( \bar{L}_{\alpha, \beta }^{1},\bar{D},\times,\bar{\Delta } ) \)
The concepts of the Boehmian spaces are obtained by following an algebraic approach that hires convolutions and delta sequences, which are approximating identities. When the structure is allowed to be a function space and the space multiplication is interpreted as a convolution product, the new structure yields a space of Boehmians (see, e.g., [2, 21–35, 44] and [1, 8, 11, 33, 36–40, 42]). Let Δ be the set of all sequences \(( \delta _{n} ) \) in D such that the following properties hold:
The following result shows that Δ is a set of delta sequences.
Lemma 3
Let \(( \delta _{n} ) \) and \(( \theta _{n} )\) be in Δ. Then \(( \delta _{n}\ast _{\alpha,\beta }\theta _{n} )\) is in Δ.
Proof
Let \(( \delta _{n} ) \) and \(( \theta _{n} )\) be in Δ. Then, to prove this lemma, we have to prove that Eqs. (10)–(12) hold for \(( \delta _{n}\ast _{\alpha,\beta }\theta _{n} )\). By [1, Eq. (2.2)] we infer that \(\psi _{\lambda }^{\alpha,\beta } ( \zeta ) =1\) for \(\lambda =0\). Therefore, we obtain
Hence, by the convolution theorem, Eq. (9) and Eq. (10) give
This proves that Eq. (10) holds for \(( \delta _{n}\ast _{\alpha,\beta }\theta _{n} )\). To show that Eq. (11) holds for \(( \delta _{n}\ast _{\alpha,\beta }\theta _{n} )\), we use Proposition 2 to obtain
Finally, the proof of the fact that \(( \delta _{n}\ast _{\alpha,\beta }\theta _{n} )\) satisfies Eq. (12) is straightforward. The proof is therefore completed.
Hence, the necessary axioms for establishing the Boehmians space \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \):
-
(i)
\(\psi _{1}\ast _{\alpha,\beta }\psi _{2}=\psi _{2} \ast _{\alpha,\beta }\psi _{1}\), \(\psi _{1}\in L_{\alpha,\beta }^{1}\) and \(\psi _{2}\in D\);
-
(ii)
\(\psi _{1}\ast _{\alpha,\beta } ( \psi _{2} \ast _{\alpha,\beta }\psi _{3} ) = ( \psi _{1}\ast _{ \alpha,\beta }\psi _{2} ) \ast _{\alpha,\beta }\psi _{3}\), \(\psi _{1}\in L_{\alpha,\beta }^{1}\) and \(\psi _{2},\psi _{3}\in D\);
-
(iii)
\(\psi _{1}\ast _{\alpha,\beta }\psi _{2}\in L_{ \alpha,\beta }^{1}\), \(\psi _{1}\in L_{\alpha,\beta }^{1}\), \(\psi _{2}\in D\),
are justified by Propositions 1 and 2. Hence, we omit the details. □
Theorem 4
Let \(\psi _{3},\psi _{1},\psi _{n}\in L_{\alpha,\beta }^{1}\) and \(\psi _{2}\in D\). Then the undermentioned relations hold.
-
(i)
\(\psi _{n}\ast _{\alpha,\beta }\psi _{2} \rightarrow \psi _{1}\ast _{\alpha,\beta }\psi _{2}\) as \(n\rightarrow \infty \) as \(\psi _{n} \rightarrow \psi _{1} \).
-
(ii)
\(( \psi _{1}+\psi _{3} ) \ast _{ \alpha,\beta }\psi _{2}=\psi _{1}\ast _{\alpha,\beta }\psi _{2}+ \psi _{3}\ast _{\alpha,\beta }\psi _{2}\).
Proof of this lemma can be easily obtained from using Eq. (6). Hence, the details are deleted.
To complete the process of establishing the space \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \), we derive the following relation.
Lemma 5
Let \(( \delta _{n} ) \in \Delta \) and \(\psi \in L_{\alpha,\beta }^{1}\). Then we have \(\psi \ast _{\alpha,\beta }\delta _{n}\rightarrow \psi \) as \(n\rightarrow \infty \).
Proof
It has already been verified that \(\psi _{1}\ast _{\alpha,\beta }\delta _{n}\in L_{\alpha,\beta }^{1}\). Therefore, from definitions we get
Thus, by employing Eq. (10), we obtain
Again by Part (i) of Proposition 2, Eq. (13) gives
Since \(( \delta _{n} ) \) is of compact support, we by Eq. (12) get
as \(n\rightarrow \infty \).
This ends the proof of the lemma. □
Therefore the Boehmian space \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \) is obtained. The sum of the Boehmians \([\frac{\varphi _{n}}{\delta _{n}} ]\) and \([\frac{\psi _{n}}{\varepsilon _{n}} ]\) is given in \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \) as
whereas the multiplication of a Boehmian \(\frac{\varphi _{n}}{\delta _{n}}\) or sometimes \([\frac{\varphi _{n}}{\delta _{n}} ]\) in \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \) by a complex number γ is defined as \(\gamma [ \frac{\varphi _{n}}{\delta _{n}} ] = [ \frac{\gamma \varphi _{n}}{\delta _{n}} ] \). On the other hand, the extension of \(\ast _{\alpha,\beta }\) and \(D^{\alpha }\) to \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \) is introduced as
Moreover, an extension of \(\ast _{\alpha,\beta }\) to \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \ast _{\alpha,\beta }L_{\alpha,\beta }^{1} ( \mathbb{R}^{2} ) \), where \(( \varphi _{n}/\delta _{n} ) \) is in \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \) and ω in \(L_{\alpha,\beta }^{1} \), is given as
If \(\beta _{n},\beta \in B ( L_{\alpha,\beta }^{1},D,\ast _{ \alpha,\beta },\Delta ) \), \(n=1,2,3,\ldots \) , then \(\{ \beta _{n} \} \) converges in δ type to β, namely \(\delta -\lim_{n\rightarrow \infty }\beta _{n}=\beta ( \beta _{n}\overset{\delta }{\rightarrow }\beta ) \), provided there can be found a delta sequence \(\{ \delta _{n} \} \) such that
-
(a)
\(( \beta _{n}\ast _{\alpha,\beta }\delta _{k} ) \) and \(( \beta \ast _{\alpha,\beta }\delta _{k} ) \in L_{ \alpha,\beta }^{1}\) for all \(n,k\in \mathbb{N}\),
-
(b)
\(\lim_{n\rightarrow \infty }\beta _{n}\ast _{\alpha,\beta }\delta _{k}= \beta \ast _{\alpha,\beta }\delta _{k}\) in \(L_{\alpha,\beta }^{1}\) for every \(k\in \mathbb{N}\).
Or, equivalently, \(\delta -\lim_{n\rightarrow \infty }\beta _{n}=\beta \) if and only if there are \(\varphi _{n,k}\), \(\varphi _{k}\in L_{\alpha,\beta }^{1}\) and \(\{ \delta _{k} \} \in \Delta \) such that
-
(i)
\(\beta _{n}=\varphi _{n,k}/\delta _{k}\), \(\beta =\varphi _{k}/\delta _{k}\)
-
(ii)
\(\lim_{n\rightarrow \infty }\varphi _{n,k}=\varphi _{k}\in L_{ \alpha,\beta }^{1}\) to every \(k\in \mathbb{N}\).
If \(\beta _{n},\beta \in B ( L_{\alpha,\beta }^{1},D,\ast _{ \alpha,\beta },\Delta ) \) for \(n=1,2,3,\ldots \) , then the sequence \(\{ \beta _{n} \} \) converges in Δ type to β, namely Δ-\(\lim_{n\rightarrow \infty }\beta _{n}= \beta ( \beta _{n}\overset{\Delta }{\rightarrow }\beta ) \), provided there can be found a delta sequence \(\{ \delta _{n} \} \) such that
-
(i)
\(( \beta _{n}-\beta ) \ast _{\alpha,\beta }\delta _{n} \in L_{\alpha,\beta }^{1}\) \(( \forall n\in \mathbb{N} ) \)
-
(ii)
\(\lim_{n\rightarrow \infty } ( \beta _{n}- \beta ) \ast _{\alpha,\beta }\delta _{n}=0\) in \(L_{\alpha,\beta }^{1}\).
We turn to the construction of the ultraspace \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times,\bar{\Delta } ) \) of Boehmians. Let D̄, \(\bar{L}_{\alpha,\beta }^{1}\) be the spaces of all Jacobi–Dunkl transforms of the spaces D and \(L_{\alpha,\beta }^{1}\), respectively, and Δ̄ be the set of the Jacobi–Dunkl transforms of the set Δ. Define a product formula \(\times _{\alpha,\beta }\) between D̄ and \(\bar{L}_{\alpha,\beta }^{1}\) by
With the product \(\times _{\alpha,\beta }\), the space \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{\alpha,\beta },\bar{\Delta } ) \) can be easily verified as a Boehmian space by virtue of the following result.
Theorem 6
Let \(F_{1},F_{2}\in \bar{L}_{\alpha,\beta }^{1}\), \(G_{1},G\in \bar{D}\). Then the undermentioned relations hold.
-
(i)
\(( F_{1}+F_{2} ) \times _{\alpha, \beta }G=F_{1}\times _{\alpha,\beta }G+F_{2}\times _{\alpha,\beta }G\).
-
(ii)
\(F_{1}\times _{\alpha,\beta }G=G\times _{\alpha, \beta }F_{1}\).
-
(iii)
\(\lambda ( F_{1}\times _{\alpha,\beta }G ) = ( \lambda F_{1} ) \times _{\alpha,\beta }G, \lambda \in \mathbb{C}\).
-
(iv)
\(F_{n}\times _{\alpha,\beta }G\rightarrow F_{1} \times _{\alpha,\beta }G\) for every \(F_{n}\in \bar{L}_{\alpha,\beta }^{1}\).
-
(v)
\(F_{n}\rightarrow F_{1}\) as \(n\rightarrow \infty \) in \(\bar{L}_{\alpha,\beta }^{1}\).
-
(vi)
\(F_{1}\times _{\alpha,\beta } ( G\times _{ \alpha,\beta }G_{1} ) = ( F_{1}\times _{\alpha,\beta }G ) \times _{\alpha,\beta }G_{1}\).
Proof
We prove (ii) as the proofs of (i), (iii), (iv), and (v) are similar to those given in literature or are straightforward results from simple integration. Let \(\psi _{1}\in L_{\alpha,\beta }^{1}\) and \(\psi _{2}\in D\) be such that \(J_{\alpha,\beta }^{d}\psi _{1}=F_{1} \) and \(J_{\alpha,\beta }^{d}\psi _{2}=G\). Then, by Eq. (9), we write
Hence, since \(\psi _{1}\ast _{\alpha,\beta }\psi _{2}=\psi _{2}\ast _{\alpha, \beta }\psi _{1}\), we have
This ends the proof of the theorem. □
Theorem 7
Let \(( \bar{\delta }_{n} ), ( \bar{\theta }_{n} ) \in \bar{\Delta }\). Then \(\bar{\delta }_{n}\times _{\alpha,\beta }\bar{\theta }_{n}\in \bar{\Delta }\) for all \(n\in \mathbb{N}\).
Proof
Let \(( \delta _{n} ), ( \theta _{n} ) \) be in Δ such that \(\bar{\delta }_{n}=J_{\alpha,\beta }^{d}\delta _{n}\) and \(\bar{\theta }_{n}=J_{\alpha,\beta }^{d}\theta _{n}\). Then, by Eq. (9), we have
It is perspicuous that \(\bar{\delta }_{n}\times _{\alpha,\beta }\bar{\theta }_{n}\in \bar{\Delta }\) as \(( \delta _{n}\ast _{\alpha,\beta },\theta _{n} ) \in \Delta \) by Lemma 3. This completes the proof of the theorem. □
Similarly, we proceed to establishing the following theorem.
Theorem 8
Let \(( \bar{\delta }_{n} ) \in \bar{\Delta }\) and \(F\in \bar{L}_{\alpha,\beta }^{1}\). Then we have
The space \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{\alpha, \beta },\bar{\Delta } ) \) is an ultra-Boehmian space. For addition, multiplication by a scalar, δ-convergence, and Δ-convergence in the space \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{\alpha, \beta },\bar{\Delta } ) \), see [2, 21–32] and \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \) for similar definitions, replacing \(\ast _{\alpha,\beta }\) with \(\times _{\alpha,\beta }\).
3 The generalized Jacobi–Dunkl transform
In this section, we aim to introduce the generalized definition of the Jacobi–Dunkl integral operator. Let \([ \frac{\psi _{n}}{\delta _{n}} ] \in B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta }, \Delta ) \), then the generalized Jacobi–Dunkl transform of \([ \frac{\psi _{n}}{\delta _{n}} ] \) is a Boehmian in \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{\alpha, \beta },\bar{\Delta } ) \) defined by
Theorem 9
The estimated generalized Jacobi–Dunkl operator \(\bar{F}_{\alpha,\beta }\) is well defined and linear from the space \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \) into the space \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{\alpha, \beta },\bar{\Delta } ) \).
Proof
Let \([ \frac{\varphi _{n}}{\delta _{n}} ] = [ \frac{\psi _{n}}{\varepsilon _{n}} ] \in B ( L_{\alpha, \beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \). Then we have
Applying \(\bar{F}_{\alpha,\beta }\) to both sides in the preceding equation and making use of Eq. (9) reveal that
In view of the concept of quotients of the sequences of \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{\alpha, \beta },\bar{\Delta } ) \), Eq. (16) gives
To show that the transform \(\bar{F}_{\alpha,\beta }:B ( L_{\alpha,\beta }^{1},D,\ast _{ \alpha,\beta },\Delta ) \rightarrow B ( \bar{L}_{\alpha, \beta }^{1},\bar{D},\times _{\alpha,\beta },\bar{\Delta } ) \) is linear, let \([ \frac{\varphi _{n}}{\delta _{n}} ], [ \frac{\psi _{n}}{\varepsilon _{n}} ] \in B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \). Then, by the idea of the addition of \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \), Eq. (15), Eq. (9), and the idea of the addition of \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{\alpha,\beta },\bar{\Delta } ) \), we can announce that
Hence, Eq. (15) leads to
Also, we have
Hence,
Equations (17) and (18) end the proof of this theorem. □
Theorem 10
The mapping \(\bar{F}_{\alpha,\beta }:B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \rightarrow B ( \bar{L}_{\alpha,\beta }^{1},\bar{D}, \times _{\alpha,\beta },\bar{\Delta } ) \) is an isomorphism.
Proof
Let \([ \frac{J_{\alpha,\beta }^{d}\varphi _{n}}{\delta _{n}} ] = [ \frac{J_{\alpha,\beta }^{d}\psi _{n}}{\varepsilon _{n}} ] \in B ( \bar{L}_{\alpha,\beta }^{1}, \bar{D},\times _{\alpha,\beta },\bar{\Delta } ) \). Then, by using Eq. (9), we get
Once again, (14) reveals to have
We, thus, obtain \(\varphi _{n}\ast _{\alpha,\beta }\varepsilon _{m}=\psi _{m}\ast _{ \alpha,\beta }\delta _{n}\) for all \(m,n\in \mathbb{N}\). Hence, by the concept of quotients of \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \), we have
This confirms the injectivity of the mapping. The surjectivity part of \(\bar{F}_{\alpha,\beta }\) is very clear as, for every \([ \frac{J_{\alpha,\beta }^{d}\varphi _{n}}{J_{\alpha,\beta }^{d}\delta _{n}} ] \in B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{ \alpha,\beta },\bar{\Delta } ) \), there can be found \([ \frac{\varphi _{n}}{\delta _{n}} ] \in B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{ \alpha,\beta },\bar{\Delta } ) \) such that
The proof of the theorem is ended. □
Definition 11
Let \([ \frac{J_{\alpha,\beta }^{d}\varphi _{n}}{J_{\alpha,\beta }^{d}\delta _{n}} ] \in B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{ \alpha,\beta },\bar{\Delta } ) \). Then we define the transform inversion formula of \(\bar{F}_{\alpha,\beta }\) as
Theorem 12
Let \([ \frac{J_{\alpha,\beta }^{d}\varphi _{n}}{J_{\alpha,\beta }^{d}\delta _{n}} ] \) be in \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{\alpha,\beta }, \bar{\Delta } ) \) for some \([ \frac{\varphi _{n}}{\delta _{n}} ] \) in \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \). Then, for \(\phi \in \bar{D} ( \mathbb{\mathbb{R} } ) \) and \(\psi \in D\), we have
for some \(\theta \in D\).
Proof
Let \([ \frac{J_{\alpha,\beta }^{d}\varphi _{n}}{J_{\alpha,\beta }^{d}\delta _{n}} ] \in B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{ \alpha,\beta },\bar{\Delta } ) \) and \(\phi \in \bar{D} ( \mathbb{\mathbb{R} } ) \) be such that \(\phi =J_{\alpha,\beta }^{d}\theta \) for some \(\theta \in D\). Then, by Eq. (9), we write
To prove the second identity of this theorem, we make use of Eq. (9) to obtain
This ends the proof of the theorem. □
Theorem 13
The mappings \(\bar{F}_{\alpha,\beta }:B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \rightarrow B ( \bar{L}_{\alpha,\beta }^{1},\bar{D}, \times _{\alpha,\beta },\bar{\Delta } ) \) and \(( \bar{F}_{\alpha,\beta } ) ^{-1}:B ( \bar{L}_{ \alpha,\beta }^{1},\bar{D},\times _{\alpha,\beta },\bar{\Delta } ) \rightarrow B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha, \beta },\Delta ) \) are continuous with respect to δ and Δ-convergence.
Proof
We show that \(\bar{F}_{\alpha,\beta }\) and \(( \bar{F}_{\alpha,\beta } ) ^{-1} \) are continuous with respect to the convergence of δ type. For this aim, we assume \(\beta _{n}\overset{\delta }{\rightarrow }\beta \) in \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \) as \(n\rightarrow \infty \) and verify that \(\bar{F}_{\alpha,\beta }\beta _{n}\rightarrow \bar{F}_{\alpha, \beta }\beta \) as \(n\rightarrow \infty \). Let \(\psi _{n,k}\) and \(\psi _{k}\) be in \(L_{\alpha,\beta }^{1}\) such that
and \(\psi _{n,k}\rightarrow \psi _{k}\) as \(n\rightarrow \infty \) for all \(k\in \mathbb{N} \). Then \(J_{\alpha,\beta }^{d}\psi _{n,k}\rightarrow J_{\alpha,\beta }^{d} \psi _{k}\) as \(n\rightarrow \infty \) in the space \(\bar{L}_{\alpha,\beta }^{1}\). Therefore,
as \(n\rightarrow \infty \) in \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{\alpha,\beta },\bar{\Delta } ) \).
To prove the second part, let \(g_{n}\overset{\delta }{\rightarrow }g\) in \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{\alpha,\beta }, \bar{\Delta } ) \) as \(n\rightarrow \infty \). Then, let \(g_{n}= [ \frac{J_{\alpha,\beta }^{d}\psi _{n,k}}{J_{\alpha,\beta }^{d}\phi _{k}} ] \) and \(g= [ \frac{J_{\alpha,\beta }^{d}\psi _{k}}{J_{\alpha,\beta }^{d}\phi _{k}} ] \) and \(J_{\alpha,\beta }^{d}\psi _{n,k}\rightarrow J_{\alpha,\beta }^{d} \psi _{k}\) as \(n\rightarrow \infty \). Therefore, \(\psi _{n,k}\rightarrow \psi _{k}\) in \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \) as \(n\rightarrow \infty \). Hence, \([ \frac{\psi _{n,k}}{\phi _{k}} ] \rightarrow [ \frac{\psi _{k}}{\phi _{k}} ] \) as \(n\rightarrow \infty \). Using Eq. (15) reveals
To establish continuity with respect to the convergence of Δ type, we assume \(\beta _{n}\overset{\Delta }{\rightarrow }\beta \) in \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \) as \(n\rightarrow \infty \). Then there exist \(\psi _{n}\in L_{\alpha,\beta }^{1}\) and \(( \phi _{n} ) \in \Delta \) such that \(( \beta _{n}-\beta ) \ast _{\alpha,\beta }\phi _{n}= [ \frac{\psi _{n}\ast _{\alpha,\beta }\phi _{k}}{\phi _{k}} ] \) and \(\psi _{n}\rightarrow 0\) as \(n\rightarrow \infty \). Employing (15) gives
Hence, we derive
as \(n\rightarrow \infty \) in \(\bar{L}_{\alpha,\beta }^{1}\). Therefore, from Eq. (22) we get
Hence, \(\bar{F}_{\alpha,\beta }\beta _{n} \overset{\Delta }{\rightarrow }\bar{F}_{\alpha,\beta }\beta \) as \(n\rightarrow \infty\).
Finally, let \(g_{n}\overset{\Delta }{\rightarrow }g\) in \(B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{\alpha, \beta },\bar{\Delta } ) \) as \(n\rightarrow \infty \). Then we find \(J_{\alpha,\beta }^{d}\psi _{k}\in \bar{L}_{\alpha,\beta }^{1}\) such that \(( g_{n}-g ) \times _{\alpha,\beta }\phi _{k}= [ \frac{J_{\alpha,\beta }^{d}\psi _{k}\times _{\alpha,\beta }\phi _{k}}{\phi _{k}} ] \) and \(J_{\alpha,\beta }^{d}\psi _{k}\rightarrow 0\) as \(n\rightarrow \infty \) for some \(\phi _{k}=J_{\alpha,\beta }^{d}\theta _{k},\theta _{k}\in \Delta \). Now, using Definition 11, we obtain
That is,
Thus, Eq. (23) gives
Due to the above equation, we infer that \(( \bar{F}_{\alpha,\beta } ) ^{-1}g_{n}\overset{\Delta }{\rightarrow } ( \bar{F}_{\alpha,\beta } ) ^{-1}g\) for large values of n in \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \).
This ends the proof of the theorem. □
Theorem 14
The extended \(\bar{F}_{\alpha,\beta } \) transform and the classical \(J_{\alpha,\beta }^{d}\) transform are consistent.
Proof
For every \(\psi \in L_{\alpha,\beta }^{1}\), assume that β is its representative in \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \). This indeed reveals that \(\beta = [ \frac{\psi \ast _{\alpha,\beta }\delta _{n}}{\delta _{n}} ] \), where \(( \delta _{n} ) \in \Delta,n\in \mathbb{N}\). It is obvious that the delta sequence \(( \delta _{n} ) \) is independent from the representative for all \(n\in \mathbb{N}\). Consequently,
which is the representative of \(J_{\alpha,\beta }^{d}\psi \) in \(\bar{L}_{\alpha,\beta }^{1}\).
Hence, the proof of the theorem is ended. □
Theorem 15
Let \([ \frac{\psi _{n}}{\delta _{n}} ] \in B ( \bar{L}_{\alpha,\beta }^{1},\bar{D},\times _{ \alpha,\beta },\bar{\Delta } ) \). Then the condition for \([ \frac{\psi _{n}}{\delta _{n}} ] \), which is necessary and sufficient, to be in the range of \(\bar{F}_{\alpha,\beta }\) is that \(\psi _{n}\) is in the range of \(J_{\alpha,\beta }^{d}\) for every \(n\in \mathbb{N}\).
Proof
If \([ \frac{\psi _{n}}{\delta _{n}} ] \) is in the range of \(\bar{F}_{\alpha,\beta }\), then indeed \(\psi _{n}\) is in the range of \(J_{\alpha,\beta }^{d}\) for all \(n\in \mathbb{N}\). For the converse, if \(\psi _{n}\) is in the range of \(J_{\alpha,\beta }^{d}\) for all \(n\in \mathbb{N}\), then we can find \(f_{n}\in L_{\alpha,\beta }^{1}\) so that \(J_{\alpha,\beta }^{d}f_{n}=\psi _{n}\) for all \(n\in \mathbb{N}\). Since \([ \frac{\psi _{n}}{\delta _{n}} ] \in B ( \bar{L}_{ \alpha,\beta }^{1},\bar{D},\times _{\alpha,\beta },\bar{\Delta } ) \),
Therefore, for some \(f_{n}\in L_{\alpha,\beta }^{1}\) and \(\varphi _{n}\in \Delta \), we find
The fact that \(J_{\alpha,\beta }^{d}\) is injective, implies that \(f_{n}\ast _{\alpha,\beta }\varphi _{m}=f_{m}\ast _{\alpha,\beta } \varphi _{n},m,n\in \mathbb{N}\).
Thus, \(\frac{f_{n}}{\varphi _{n}}\) is a quotient of the sequences in \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \). Hence,
Hence the theorem is proved. □
4 Conclusion
The classical theory of the Jacobi–Dunkl integral operator of [1] is extended to a class of Boehmians. Every element of the classical space \(L_{\alpha,\beta }^{1} \) is identified as a member of the Boehmian space \(B ( L_{\alpha,\beta }^{1},D,\ast _{\alpha,\beta },\Delta ) \). Various embeddings and characteristics of the extended integral operator including an inversion formula are given in a generalized sense. Convergence with respect to δ and Δ is also discussed.
Availability of data and materials
Please contact the authors for data requests.
References
Ben Salem, N., Ahmed Salem, A.: Convolution structure associated with the Jacobi–Dunkl operator on \(\mathbb{R}\). Ramanujan J. 12(3), 359–378 (2006)
Ben Salem, N., Samaali, T.: Hilbert transform and related topics associated with Jacobi–Dunkl operators of compact and noncompact types. Adv. Pure Appl. Math. 2, 367–388 (2011)
Srivastava, H.M., Luo, M., Raina, R.K.: A new integral transform and its applications. Acta Math. Sci. 35B(6), 1386–1400 (2015)
Chouchene, F.: Harmonic analysis associated with the Jacobi–Dunkl operator on \(]-2,2[\). J. Comput. Appl. Math. 178, 75–89 (2005)
Chouchane, F., Mili, M., Trimèche, K.: An Lp version of Hardy’s theorem for the Jacobi–Dunkl transform. Integ. Trans. Spl. Funct. 15(3), 225–237 (2004)
Ben Mohamed, H.: The Jacobi–Dunkl transform on \(\mathbb{R}\) and the convolution product on new space of distributions. Ramanujan J. 21, 145–175 (2010)
Chouchane, F., Mili, M., Trimche, K.: Positivity of the intertwining operator and harmonic analysis associated with the Jacobi–Dunkl operator on \(\mathbb{R}\). J. Anal. Appl. 1(4), 387–412 (2003)
Exton, H.: Certain hypergeometric functions of four variables. Bull. Soc. Math. Grece, (N.S.) 13, 104113 (1972)
El-Ouadiah, S., Daher, R.: Some results for the Jacobi–Dunkl transform in the space \(L_{p}(\mathbb{R};A;(x)dx)\). Casp. J. Math. Sci. 5(2), 98–105 (2016)
Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, G.: Higher Transcendental Functions, vol. 2. MacGraw-Hill Book Company (1953)
Sharma, C., Parihar, C.L.: Hypergeometric functions of four variables (I). J. Indian Acad. Math. 11(2), 99115 (1989)
Bloom, W.R., Heyer, H.: Harmonic Analysis of Probability Measures on Hypergroups. de Gruyter, Berlin (1995)
Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012)
Agarwal, P., Choi, J.: Certain fractional integral inequalities associated with pathway fractional integral operators. Bull. Korean Math. Soc. 53(1), 181–193 (2016)
Agarwal, P., Choi, J., Kachhia, K., Prajapati, J.C., Zhou, H.Z.: Some integral transforms and fractional integral formulas for the extended hypergeometric functions. Commun. Korean Math. Soc. 31(3), 591–601 (2016)
Al-Omari, S., Agarwal, P.: Some general properties of a fractional Sumudu transform in the class of Boehmians. Kuwait J. Sci. 43(2), 16–30 (2016)
Kaur, D., Agarwal, P., Rakshit, M., Chand, M.: Fractional calculus involving \((p, q)\)-Mathieu type series. Appl. Math. Nonlinear Sci. 5(2), 1–15 (2020)
Agarwal, P.: A composition formula of the pathway integral transform operator. Note Mat. 34(2), 145–156 (2015)
Agarwal, P.: Certain integral transforms for the incomplete functions. Appl. Math. Inf. Sci. 9(4), 2161 (2015)
Exton, H.: Some integral representations and transformations of hypergeometric functions of four variables. Bull. Soc. Math. Grece, (N.S.) 14, 132140 (1973)
Nemzer, D.: Periodic Boehmians II. Bull. Aust. Math. Soc. 44, 271–278 (1991)
Al-Omari, S., Agarwal, P., Choi, J.: Real covering of the generalized Hankel–Clifford transform of Fox kernel type of a class of Boehmians. Bull. Korean Math. Soc. 52(5), 1607–1619 (2015)
Mikusiński, P.: Convergence of Boehmians. Jpn. J. Math. 9(1), 159–179 (1983)
Al-Omari, S., Jumah, G., Al-Omari, J., Saxena, D.: A new version of the generalized Kratzel–Fox integral operators. Mathematics 6(222), 1–12 (2018)
Mikusinski, P.: Boehmians and pseudoquotients. Appl. Math. Inf. Sci. 5, 192–204 (2011)
Al-Omari, S., Al-Omari, J.F.: Some extensions of a certain integral transform to a quotient space of generalized functions. Open Math. 13, 816–825 (2015)
Al-Omari, S., Baleanu, D.: The extension of a modified integral operator to a class of generalized functions. J. Comput. Anal. Appl. 24(2), 209–218 (2018)
Al-Omari, S.: Some remarks on short-time Fourier integral operators and classes of rapidly decaying functions. Math. Methods Appl. Sci. 41, 1–8 (2018)
Al-Omari, S.: On a class of generalized Meijer–Laplace transforms of Fox function type kernels and their extension to a class of Boehmians. Georgian Math. J. 24(1), 1–13 (2017)
Nemzer, D.: The Laplace transform on a class of Boehmians. Bull. Aust. Math. Soc. 46, 347–352 (1992)
Al-Omari, S.: A study on a class of modified Bessel-type integrals in a Fréchet space of Boehmians. Bol. Soc. Parana. Mat. 38(4), 145–156 (2020)
Al-Omari, S., Araci, S., Al-Smadi, M., Gumah, G., Rabaieh, H.: Estimates of certain paraxial diffraction integral operator and its generalized properties. Adv. Differ. Equ. 403, 1–12 (2020)
Al-Omari, S.: Some estimate of a generalized Bessel–Struve transform on certain space of generalized functions. Ukr. Math. Bull. 69(9), 1155–1165 (2017)
Al-Omari, S., Kilicman, A.: An estimate of Sumudu transform for Boehmians. Adv. Differ. Equ. 2013, 77 (2013)
Al-Omari, S., Baleanu, D.: A quadratic-phase integral operator for sets of generalized integrable functions. Math. Methods Appl. Sci. 43(7), 4168–4176 (2020)
Karunakaran, V., Vembu, R.: Hilbert transform on periodic Boehmians. Houst. J. Math. 29, 439–454 (2005)
Al-Omari, S., Baleanu, D.: Some remarks on short-time Fourier integral operators and classes of rapidly decaying functions. Math. Methods Appl. Sci. 41(16), 5354–5361 (2019)
Al-Omari, S., Baleanu, D.: Quaternion Fourier integral operators for spaces of generalized quaternions. Math. Methods Appl. Sci. 41, 9477–9484 (2018)
Boehme, T.K.: The support of Mikusinski operators. Trans. Am. Math. Soc. 176, 319–334 (1973)
Fernandez, A., Baleanu, D.: Classes of operators in fractional calculus: a case study. Math. Methods Appl. Sci. (2021). To appear. https://doi.org/10.1002/mma.7341
Zemanian, A.H.: Generalized Integral Transformation. Dover, New York (1968) First Published by Interscience Publishers
Al-Omari, S.: Some characteristics of S transforms in a class of rapidly decreasing Boehmians. J. Pseudo-Differ. Oper. Appl. 5(4), 527–537 (2014)
Exton, H.: Multiple Hypergeometric Functions and Applications. Ellis Horwood, London (1976)
Al-Omari, S.: Natural transform in Boehmian spaces. Nonlinear Stud. 22(2), 291–297 (2015)
Acknowledgements
The authors would like to thank the reviewers for taking the time to read and improve the present article.
Funding
No funding sources to be declared.
Author information
Authors and Affiliations
Contributions
All authors contributed equally, read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Al-Omari, S., Almusawa, H. & Nisar, K.S. A new aspect of generalized integral operator and an estimation in a generalized function theory. Adv Differ Equ 2021, 357 (2021). https://doi.org/10.1186/s13662-021-03512-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-021-03512-8
MSC
- 54C40
- 14E20
- 46E25
- 20C20
Keywords
- Difference operator
- Differential-difference function
- Jacobi–Dunkl function
- Integral transform
- Boehmian
- Differential-difference operator