Proposition 1
For \(r\in \mathcal{R}\), let \(\mathfrak{K}:[\mathbf{j},\mathbf{i}]\subseteq \mathcal{R}_{+}\rightarrow \mathcal{R}_{+}\) be a geometrically r-convex function, and let \(\mathfrak{K}\in L([\mathbf{j},\mathbf{i}])\). Then
$$\begin{aligned} & \frac{1}{2n} \int _{0}^{n}\mathfrak{K} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \,d\mathfrak{u} \\ & \quad \leq \textstyle\begin{cases}E ( \mathfrak{K}^{r} ( \mathbf{j} ) ,\mathfrak{K}^{r} ( \mathbf{i} ) ;r,r+1 ) + \frac{r ( \mathfrak{K}^{r+1} ( \mathbf{j} ) - [ A ( \mathfrak{K}^{r} ( \mathbf{j} ) ,\mathfrak{K}^{r} ( \mathbf{i} ) ) ] ^{1+\frac{1}{r}} ) }{ ( r+1 ) ( \mathfrak{K}^{r} ( \mathbf{i} ) -\mathfrak{K}^{r} ( \mathbf{j} ) ) }, & r\neq 0, \\ \sqrt{\mathfrak{K} ( \mathbf{i} ) }E(\mathfrak{K} ( \mathbf{j} ) ,\mathfrak{K} ( \mathbf{i} ) ;0,1), & r=0, \end{cases}\displaystyle \end{aligned}$$
(2.1)
where \(E(u,v;r,s)\) is Stolarsky’s mean defined by
$$\begin{aligned} &E(u,v;r,s) = \biggl[ \frac{r ( v^{s}-u^{s} ) }{s ( v^{r}-u^{r} ) } \biggr] ^{\frac{1}{s-r}},\quad rs ( r-s ) ( u-v ) \neq 0, \\ &E(u,v;0,s) = \biggl[ \frac{v^{s}-u^{s}}{s ( \ln v-\ln u ) } \biggr] ^{\frac{1}{s}},\quad s ( u-v ) \neq 0, \\ &E(u,v;r,r) =\frac{1}{e^{\frac{1}{r}}} \biggl( \frac{u^{u^{r}}}{v^{v^{r}}} \biggr) ^{\frac{1}{u^{r}-v^{r}}},\quad r ( u-v ) \neq 0, \\ &E(u,v;0,0) =\sqrt{uv},\quad u\neq v, \\ &E(u,u;r,s) =u,\quad u=v, \end{aligned}$$
\(L ( u,v ) \) is the logarithmic mean defined by
$$ E(u,v;0,1)=L ( u,v ), $$
and \(A ( \mathfrak{K}^{r} ( \mathbf{j} ) ,\mathfrak{K}^{r} ( \mathbf{i} ) ) \) is the arithmetic mean of \(\mathfrak{K}^{r} ( \mathbf{j} ) \) and \(\mathfrak{K}^{r} ( \mathbf{i} ) \) for \(( u,v ) \in \mathcal{R}_{+}^{2}\), \(( r,s ) \in \mathcal{R}^{2}\).
Proof
By the geometric r-convexity of \(\mathfrak{K}\) we have
Case I: For \(r=0\),
$$\begin{aligned} \frac{1}{2n} \int _{0}^{n}\mathfrak{K} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \,d\mathfrak{u} \leq& \frac{1}{2n} \int _{0}^{n} \bigl[ \mathfrak{K} ( \mathbf{j} ) \bigr] ^{\frac{n-\mathfrak{u}}{2n}} \bigl[ \mathfrak{K} ( \mathbf{i} ) \bigr] ^{\frac{n+\mathfrak{u}}{2n}}\,d \mathfrak{u} \\ =& \frac{\sqrt{\mathfrak{K} ( \mathbf{i} ) } ( \mathfrak{K} ( \mathbf{i} ) -\mathfrak{K} ( \mathbf{j} ) ) }{\ln \mathfrak{K} ( \mathbf{i} ) -\ln \mathfrak{K} ( \mathbf{j} ) } \\ =&\sqrt{\mathfrak{K} ( \mathbf{i} ) }E\bigl( \mathfrak{K} ( \mathbf{j} ) ,\mathfrak{K} ( \mathbf{i} ) ;0,1\bigr). \end{aligned}$$
(2.2)
Case II: Suppose now that \(r\neq 0\). Then
$$ \frac{1}{2n} \int _{0}^{n}\mathfrak{K} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \,d\mathfrak{u} \leq \frac{1}{2n} \int _{0}^{n} \biggl[ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) \mathfrak{K}^{r} ( \mathbf{j} ) + \biggl( \frac{n+\mathfrak{u}}{2n} \biggr) \mathfrak{K}^{r} ( \mathbf{i} ) \biggr] ^{ \frac{1}{r}}d\mathfrak{u.} $$
(2.3)
Let
$$ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) \mathfrak{K}^{r} ( \mathbf{j} ) + \biggl( \frac{n+\mathfrak{u}}{2n} \biggr) \mathfrak{K}^{r} ( \mathbf{i} ) =\mathfrak{y}_{1}.$$
Thus
$$\begin{aligned} \frac{1}{2n} \int _{0}^{n}\mathfrak{K} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \,d\mathfrak{u} \leq{}& \frac{1}{\mathfrak{K}^{r} ( \mathbf{i} ) -\mathfrak{K}^{r} ( \mathbf{j} ) } \int _{A ( \mathfrak{K}^{r} ( \mathbf{j} ) ,\mathfrak{K}^{r} ( \mathbf{i} ) ) }^{\mathfrak{K}^{r} ( \mathbf{i} ) } \mathfrak{y}_{1}^{\frac{1}{r}}d \mathfrak{y}_{1} \\ ={}& E \bigl( \mathfrak{K}^{r} ( \mathbf{j} ) , \mathfrak{K}^{r} ( \mathbf{i} ) ;r,r+1 \bigr) \\ &{}+ \frac{r ( \mathfrak{K}^{r+1} ( \mathbf{j} ) - [ A ( \mathfrak{K}^{r} ( \mathbf{j} ) ,\mathfrak{K}^{r} ( \mathbf{i} ) ) ] ^{1+\frac{1}{r}} ) }{ ( r+1 ) ( \mathfrak{K}^{r} ( \mathbf{i} ) -\mathfrak{K}^{r} ( \mathbf{j} ) ) }, \end{aligned}$$
where \(A ( \mathfrak{K}^{r} ( \mathbf{j} ) ,\mathfrak{K}^{r} ( \mathbf{i} ) ) \) is the arithmetic mean of \(\mathfrak{K}^{r} ( \mathbf{j} ) \) and \(\mathfrak{K}^{r} ( \mathbf{i} ) \), and the result is achieved. □
Lemma 1
Let \(\mathfrak{K}:\Bbbk \subseteq \mathcal{R}_{+}= ( 0,\infty ) \rightarrow \mathcal{R}\) be a differentiable function on \(\Bbbk ^{\circ }\), and let j, \(\mathbf{i}\in \Bbbk ^{\circ }\) with \(\mathbf{j}<\mathbf{i}\). If \(\mathfrak{K}^{{\prime }}\in L ( [ \mathbf{j},\mathbf{i} ] ) \), then
$$\begin{aligned}& \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \\& \quad =\frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \int _{0}^{n} \mathfrak{u} \bigl[ \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{1+\mathfrak{u}}{2}}\mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) - \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr] \,d\mathfrak{u} . \end{aligned}$$
(2.4)
Proof
Let
$$ \Bbbk _{1}=\frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \int _{0}^{n}\mathfrak{u} \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}}\mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \,d \mathfrak{u}$$
and
$$ \Bbbk _{2}=\frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \int _{0}^{n}\mathfrak{u} \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}}\mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \,d \mathfrak{u}. $$
By integration by parts we have
$$\begin{aligned} \Bbbk _{1} =&\frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \int _{0}^{n}\mathfrak{u} \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}}\mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \,d \mathfrak{u} \\ =&\frac{1}{2n} \int _{0}^{n}\mathfrak{u}d \bigl[ \mathfrak{K} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr] \\ =& \frac{1}{2}\mathfrak{K} ( \mathbf{i} ) - \frac{1}{2n} \int _{0}^{n}\mathfrak{K} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \,d\mathfrak{u} \\ =&\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{\sqrt{\mathbf{ji}}}^{ \mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1}. \end{aligned}$$
(2.5)
Analogously, we have
$$ \Bbbk _{2}=\frac{\mathfrak{K} ( \mathbf{j} ) }{2}+ \frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{\mathbf{j}}^{\sqrt{\mathbf{ji}}}\frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}} \,d\mathfrak{x}_{1}. $$
(2.6)
From (2.5) and (2.6) we get the required identity. □
Lemma 2
For \(u,v>0\), we have
$$ T_{0} ( u,v ) =\frac{1}{2n} \int _{0}^{n}u^{ \frac{n-\mathfrak{u}}{2n}}v^{\frac{n+\mathfrak{u}}{2n}} \,d\mathfrak{u}= \textstyle\begin{cases}\frac{1}{2}\sqrt{v} [ E ( u,v;0,\frac{1}{2} ) ] ^{2}, & u\neq v, \\ \frac{1}{4}u, & u=v, \end{cases} $$
$$\begin{aligned} R_{n} ( u,v ) & =\frac{1}{2n} \int _{0}^{n}\mathfrak{u}u^{\frac{n-\mathfrak{u}}{2n}}v^{\frac{n+\mathfrak{u}}{2n}}\,d \mathfrak{u} \\ & = \textstyle\begin{cases}\frac{u-n [ E ( u,v;0,\frac{1}{2} ) ] ^{2}}{\ln v-\ln u}+E ( u,v;0,\frac{1}{2} ) , & u\neq v, \\ \frac{1}{4}u, & u=v, \end{cases}\displaystyle \end{aligned}$$
and
$$\begin{aligned} S_{n} ( u,v ) & =\frac{1}{2n} \int _{0}^{n}\mathfrak{u}^{2}u^{\frac{n-\mathfrak{u}}{2n}}v^{\frac{n+\mathfrak{u}}{2n}}\,d \mathfrak{u} \\ & = \textstyle\begin{cases}\frac{4n^{2} [ E ( u,v;0,\frac{1}{2} ) ] ^{2}-u ( \ln v-\ln u+1 ) }{ ( \ln v-\ln u ) ^{2}}- \frac{ ( 4+\ln v-\ln u ) E ( u,v,0,1 ) }{\ln v-\ln u}, & u\neq v, \\ \frac{1}{6}u, & u=v. \end{cases}\displaystyle \end{aligned}$$
Proof
The proof follows from a straightforward computation. □
Lemma 3
For \(u,v>0\) and \(r\in \mathcal{R}\) with \(r\neq 0\), we have
$$\begin{aligned}& \frac{1}{2n} \int _{0}^{n} \biggl[ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) u^{r}+ \biggl( \frac{n+\mathfrak{u}}{2n} \biggr) v^{r} \biggr] ^{\frac{1}{r}}\,d\mathfrak{u}=\theta ( u,v;r ) , \\& \frac{1}{2n} \int _{0}^{n}\mathfrak{u} \biggl[ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) u^{r}+ \biggl( \frac{n+\mathfrak{u}}{2n} \biggr) v^{r} \biggr] ^{\frac{1}{r}}\,d\mathfrak{u}=\theta _{n,1} ( u,v;r ), \end{aligned}$$
and
$$ \frac{1}{2n} \int _{0}^{n}\mathfrak{u}^{2} \biggl[ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) u^{r}+ \biggl( \frac{n+\mathfrak{u}}{2n} \biggr) v^{r} \biggr] ^{\frac{1}{r}}\,d \mathfrak{u}=\theta _{n,2} ( u,v;r ) , $$
where
$$\begin{aligned}& \theta ( u,v;r ) = \textstyle\begin{cases}E ( u,v;r,r+1 ) + \frac{r [ u^{r+1}- [ A ( u,v ) ] ^{1+\frac{1}{r}} ] }{ ( r+1 ) ( v^{r}-u^{r} ) }, & r\neq -1, \\ \frac{\ln v-\ln [ A ( u^{-1},v^{-1} ) ] }{v^{-1}-u^{-1}}, & r=-1, \end{cases}\displaystyle \\& \theta _{n,1} ( u,v;r ) = \textstyle\begin{cases}\textstyle\begin{array}{l}\frac{2n [ E^{r} ( u,v;r,2r+1 ) -A ( u^{r},v^{r} ) E ( u,v;r,r+1 ) ] }{v^{r}-u^{r}} \\ \quad {}+ \frac{2nr [ ( r+1 ) u^{2r+1}- ( 2r+1 ) u^{r+1}A ( u^{r},v^{r} ) +r [ A ( u^{r},v^{r} ) ] ^{2+\frac{1}{r}} ] }{ ( r+1 ) ( 2r+1 ) ( v^{r}-u^{r} ) ^{2}}, \end{array}\displaystyle & \textstyle\begin{array}{c}u\neq v, \\ r\neq -1,-\frac{1}{2}, \end{array}\displaystyle \\ \frac{2n [ v^{-1}+A ( u^{-1},v^{-1} ) \ln [ A ( u^{-1},v^{-1} ) ] +A ( u^{-1},v^{-1} ) \ln v-A ( u^{-1},v^{-1} ) ] }{ ( v^{-1}-u^{-1} ) ^{2}},& u\neq v,r=-1, \\ \frac{n [ 2\ln [ A ( u^{-\frac{1}{2}},v^{-\frac{1}{2}} ) ] +2v^{\frac{1}{2}}A ( u^{-\frac{1}{2}},v^{-\frac{1}{2}} ) -\ln v-2 ] }{ ( v^{-\frac{1}{2}}-u^{-\frac{1}{2}} ) ^{2}}, & u\neq v,r=-\frac{1}{2}, \\ \frac{1}{4}u, & u=v, \end{cases}\displaystyle \\& \theta _{n,2} ( u,v;r ) = \textstyle\begin{cases}\textstyle\begin{array}{l}\frac{4n^{2}r [ ( r+1 ) ( 2r+1 ) u^{3r+1}-2r^{2} [ A ( u^{r},v^{r} ) ] ^{3+\frac{1}{r}} ] }{ ( r+1 ) ( 2r+1 ) ( 3r+1 ) ( v^{r}-u^{r} ) ^{3}} \\ \quad {}+ \frac{4n^{2}r [ ( 2r+1 ) A ( u^{r},v^{r} ) -2u ( r+1 ) ] u^{r+1}A ( u^{r},v^{r} ) }{ ( r+1 ) ( 2r+1 ) ( v^{r}-u^{r} ) ^{3}} \\ \quad {}+ \frac{4n^{2} [ [ A ( u^{r},v^{r} ) ] ^{2}E ( u,v;r,r+1 ) + [ E ( u,v;r,2r+1 ) ] ^{r+1} ] }{ ( v^{r}-u^{r} ) ^{2}}, \end{array}\displaystyle & \textstyle\begin{array}{l}u\neq v, \\ r\neq -1,-\frac{1}{2},-\frac{1}{3}, \end{array}\displaystyle \\ \textstyle\begin{array}{l}\frac{2n^{2} [ 1-4vA ( u^{-1},v^{-1} ) +v^{2} [ A ( u^{-1},v^{-1} ) ] ^{2} [ 3-2\ln [ A ( u^{-1},v^{-1} ) ] ] ] }{v^{2} ( v^{-1}-u^{-1} ) ^{3}} \\ \quad {}- \frac{4n^{2} [ A ( u^{-1},v^{-1} ) ] ^{2}\ln v}{ ( v^{-1}-u^{-1} ) ^{3}}, \end{array}\displaystyle & u\neq v,r=-1, \\ \textstyle\begin{array}{l}\frac{4n^{2} [ A ( u^{-\frac{1}{2}},v^{-\frac{1}{2}} ) \ln v+2A ( u^{-\frac{1}{2}},v^{-\frac{1}{2}} ) \ln [ A ( u^{-\frac{1}{2}},v^{-\frac{1}{2}} ) ] ] }{ ( v^{-\frac{1}{2}}-u^{-\frac{1}{2}} ) ^{3}} \\ \quad {}- \frac{4n^{2}v^{-\frac{1}{2}} ( v [ A ( u^{-\frac{1}{2}},v^{-\frac{1}{2}} ) ] ^{2}-1 ) }{ ( v^{-\frac{1}{2}}-u^{-\frac{1}{2}} ) ^{3}}, \end{array}\displaystyle & u\neq v,r=-\frac{1}{2}, \\ \textstyle\begin{array}{l}\frac{2n^{2}uv \{ 6\ln [ A ( u^{-\frac{1}{3}},v^{-\frac{1}{3}} ) ] +3v^{\frac{2}{3}} [ A ( u^{-\frac{1}{3}},v^{-\frac{1}{3}} ) ] ^{2} \} }{3 ( v^{\frac{1}{3}}-u^{\frac{1}{3}} ) ^{3}} \\ \quad {}+ \frac{2\ln v-12v^{\frac{1}{3}}A ( u^{-\frac{1}{3}},v^{-\frac{1}{3}} ) +9}{3 ( v^{\frac{1}{3}}-u^{\frac{1}{3}} ) ^{3}}, \end{array}\displaystyle & u\neq v,r=-\frac{1}{3}, \\ \frac{1}{6}u, & u=v. \end{cases}\displaystyle \end{aligned}$$
Proof
The proof is obvious when \(u=v\) and when \(u\neq v\) and \(r=-1,-\frac{1}{2},-\frac{1}{3}\).
Suppose \(u\neq v\) and \(r\neq -1,-\frac{1}{2},-\frac{1}{3}\). Then we have
$$\begin{aligned}& \frac{1}{2n} \int _{0}^{1}\mathfrak{u} \biggl[ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) u^{r}+ \biggl( \frac{n+\mathfrak{u}}{2n} \biggr) v^{r} \biggr] ^{\frac{1}{r}}\,d\mathfrak{u} \\& \quad = \frac{2nr^{2} [ A ( u^{r},v^{r} ) ] ^{2+\frac{1}{r}}-2nrv^{r+1} ( 2r+1 ) A ( u^{r},v^{r} ) +2nr ( r+1 ) v^{2r+1}}{ ( r+1 ) ( 2r+1 ) ( v^{r}-u^{r} ) ^{2}} \\& \quad = \frac{2nr^{2} [ A ( u^{r},v^{r} ) ] ^{2+\frac{1}{r}}}{ ( r+1 ) ( 2r+1 ) ( v^{r}-u^{r} ) ^{2}} \\& \qquad {}+ \frac{2n [ E ( u,v;r,2r+1 ) ] ^{r+1}-2nA ( u^{r},v^{r} ) E ( u,v;r,r+1 ) }{v^{r}-u^{r}} \\& \qquad {}+ \frac{2nr ( r+1 ) u^{2r+1}-2nr ( 2r+1 ) u^{r+1}A ( u^{r},v^{r} ) }{ ( r+1 ) ( 2r+1 ) ( v^{r}-u^{r} ) ^{2}} \end{aligned}$$
and
$$\begin{aligned}& \frac{1}{2n} \int _{0}^{1}\mathfrak{u}^{2} \biggl[ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) u^{r}+ \biggl( \frac{n+\mathfrak{u}}{2n} \biggr) v^{r} \biggr] ^{\frac{1}{r}}\,d \mathfrak{u} \\& \quad =- \frac{8n^{2}r^{3} [ A ( u^{r},v^{r} ) ] ^{3+\frac{1}{r}}}{ ( r+1 ) ( 2r+1 ) ( 3r+1 ) ( v^{r}-u^{r} ) ^{3}}+ \frac{4rn^{2}v^{r+1} [ A ( u^{r},v^{r} ) ] ^{2}}{ ( r+1 ) ( v^{r}-u^{r} ) ^{3}} \\& \qquad {}- \frac{8n^{2}rv^{2r+1}A ( u^{r},v^{r} ) }{ ( 2r+1 ) ( v^{r}-u^{r} ) ^{3}}+ \frac{4n^{2}rv^{3r+1}}{ ( 3r+1 ) ( v^{r}-u^{r} ) ^{3}} \\& \quad = \frac{4n^{2}r [ ( r+1 ) ( 2r+1 ) u^{3r+1}-2r^{2} [ A ( u^{r},v^{r} ) ] ^{3+\frac{1}{r}} ] }{ ( r+1 ) ( 2r+1 ) ( 3r+1 ) ( v^{r}-u^{r} ) ^{3}} \\& \qquad {}+ \frac{4n^{2}r [ ( 2r+1 ) A ( u^{r},v^{r} ) -2u ( r+1 ) ] u^{r+1}A ( u^{r},v^{r} ) }{ ( r+1 ) ( 2r+1 ) ( v^{r}-u^{r} ) ^{3}} \\& \qquad {}+ \frac{4n^{2} [ [ A ( u^{r},v^{r} ) ] ^{2}E ( u,v;r,r+1 ) + [ E ( u,v;r,2r+1 ) ] ^{r+1} ] }{ ( v^{r}-u^{r} ) ^{2}}. \end{aligned}$$
□
We now establish new Hermite–Hadamard-type inequalities for geometrically r-convex functions. We believe that our results provide a refinement of the results proved in [25].
Lemma 4
For \(u,v>0\),
$$\begin{aligned}& \int _{0}^{1}u^{\frac{1-\mathfrak{u}}{2}}v^{ \frac{1+\mathfrak{u}}{2}} \,d\mathfrak{u}\leq \int _{0}^{1}u^{1-\mathfrak{u}}v^{\mathfrak{u}}d \mathfrak{u,}\\& \int _{0}^{1}\mathfrak{u}u^{\frac{1-\mathfrak{u}}{2}}v^{ \frac{1+\mathfrak{u}}{2}} \,d\mathfrak{u}\leq \int _{0}^{1}\mathfrak{u}u^{1-\mathfrak{u}}v^{\mathfrak{u}}d \mathfrak{u,} \end{aligned}$$
and
$$ \int _{0}^{1}\mathfrak{u}^{2}u^{\frac{1-\mathfrak{u}}{2}}v^{ \frac{1+\mathfrak{u}}{2}} \,d\mathfrak{u}\leq \int _{0}^{1}\mathfrak{u}^{2}u^{1-\mathfrak{u}}v^{\mathfrak{u}}d \mathfrak{u.}$$
Proof
It is obvious. □
Lemma 5
For \(u,v>0\) and \(r\in \mathcal{R}\) with \(r\neq 0\), \(\mathfrak{u}\in [ 0,1 ] \), we have
$$\begin{aligned}& \int _{0}^{1} \biggl[ \biggl( \frac{1-\mathfrak{u}}{2} \biggr) u^{r}+ \biggl( \frac{1+\mathfrak{u}}{2} \biggr) v^{r} \biggr] ^{\frac{1}{r}}\,d \mathfrak{u}\leq \int _{0}^{1} \bigl[ ( 1-\mathfrak{u} ) u^{r}+ \mathfrak{u}v^{r} \bigr] ^{\frac{1}{r}}d\mathfrak{u,}\\& \int _{0}^{1}\mathfrak{u} \biggl[ \biggl( \frac{1-\mathfrak{u}}{2} \biggr) u^{r}+ \biggl( \frac{1+\mathfrak{u}}{2} \biggr) v^{r} \biggr] ^{ \frac{1}{r}}\,d\mathfrak{u}\leq \int _{0}^{1}\mathfrak{u} \bigl[ ( 1- \mathfrak{u} ) u^{r}+\mathfrak{u}v^{r} \bigr] ^{\frac{1}{r}}\,d\mathfrak{u}, \end{aligned}$$
and
$$ \int _{0}^{1}\mathfrak{u}^{2} \biggl[ \biggl( \frac{1-\mathfrak{u}}{2} \biggr) u^{r}+ \biggl( \frac{1+\mathfrak{u}}{2} \biggr) v^{r} \biggr] ^{ \frac{1}{r}}\,d \mathfrak{u}\leq \int _{0}^{1}\mathfrak{u}^{2} \bigl[ ( 1- \mathfrak{u} ) u^{r}+\mathfrak{u}v^{r} \bigr] ^{\frac{1}{r}}d \mathfrak{u.}$$
Proof
It is obvious. □
Theorem 1
Let \(\mathfrak{K}:\Bbbk \subseteq \mathcal{R}_{+}= ( 0,\infty ) \rightarrow \mathcal{R}\) be a differentiable function on \(\Bbbk ^{\circ }\), where j, \(\mathbf{i}\in \Bbbk ^{\circ }\) with \(\mathbf{j}<\mathbf{i}\) and \(r\in \mathcal{R}\), \(r\neq 0\). Suppose that \(\mathfrak{K}^{{\prime }}\in L ( [ \mathbf{j},\mathbf{i} ] ) \) and \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically r-convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q\geq 1\). Then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{ ( \ln \mathbf{i}-\ln \mathbf{j} ) }{4n^{2}} \bigl\{ \bigl[ \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \bigr] ^{1-\frac{1}{q}} \\& \qquad {}\times \bigl[ n ( \mathbf{j}+\mathbf{i} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) + ( \mathbf{i}- \mathbf{j} ) \\& \qquad {}\times \theta _{n,2} \bigl( \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}}+ \bigl[ \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \bigr] ^{1- \frac{1}{q}} \\& \qquad {}\times \bigl[ n ( \mathbf{j}+\mathbf{i} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \\& \qquad {}+ ( \mathbf{j}-\mathbf{i} ) \theta _{n,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}} \bigr\} . \end{aligned}$$
(2.7)
Proof
From Lemma 1 and the power-mean inequality we have
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \\& \qquad {}\times \biggl\{ \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.8)
Since \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically r-convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q\geq 1\), using Lemma 3, we have
$$\begin{aligned}& \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q} \\& \quad \leq \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \biggl[ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+ \biggl( \frac{1+\mathfrak{u}}{2n} \biggr) \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{\frac{1}{r}}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n}\mathfrak{u} \biggl( \frac{n-\mathfrak{u}}{2n} \mathbf{j}+\frac{n+\mathfrak{u}}{2n}\mathbf{i} \biggr) \\& \qquad {}\times \biggl[ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+ \biggl( \frac{n+\mathfrak{u}}{2n} \biggr) \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{ \frac{1}{r}}\,d \mathfrak{u} \\& \quad =n ( \mathbf{j}+\mathbf{i} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) + ( \mathbf{i}-\mathbf{j} ) \theta _{n,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \end{aligned}$$
(2.9)
and
$$\begin{aligned}& \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q} \\& \quad \leq \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \biggl[ \biggl( \frac{n+\mathfrak{u}}{2n} \biggr) \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{\frac{1}{r}}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n}\mathfrak{u} \biggl( \frac{n+\mathfrak{u}}{2n} \mathbf{j}+\frac{n-\mathfrak{u}}{2n}\mathbf{i} \biggr) \biggl[ \biggl( \frac{n+\mathfrak{u}}{2n} \biggr) \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{ \frac{1}{r}}\,d \mathfrak{u} \\& \quad =n ( \mathbf{j}+\mathbf{i} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \\& \qquad {}+ ( \mathbf{j}-\mathbf{i} ) \theta _{n,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) . \end{aligned}$$
(2.10)
Using (2.9) and (2.10) in (2.8), we get the required result. □
Corollary 1
We observe that for \(n=1\), we obtain
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{ ( \ln \mathbf{i}-\ln \mathbf{j} ) }{4} \bigl\{ \bigl[ \theta _{1,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \bigr] ^{1- \frac{1}{q}} \\& \qquad {}\times \bigl[ ( \mathbf{j}+\mathbf{i} ) \theta _{1,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) + ( \mathbf{i}- \mathbf{j} ) \\& \qquad {}\times \theta _{1,2} \bigl( \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}}+ \bigl[ \theta _{1,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \bigr] ^{1- \frac{1}{q}} \\& \qquad {}\times \bigl[ ( \mathbf{j}+\mathbf{i} ) \theta _{1,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \\& \qquad {}+ ( \mathbf{j}-\mathbf{i} ) \theta _{1,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}} \bigr\} , \end{aligned}$$
(2.11)
where \(\theta _{1,1} ( \vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \vert ^{q}, \vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \vert ^{q};r ) \) and \(\theta _{1,2} ( \vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \vert ^{q}, \vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \vert ^{q};r ) \) can be evaluated using Lemma 3.
Corollary 2
Suppose the assumptions of Theorem 1are satisfied. If \(q=1\), then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{ ( \ln \mathbf{i}-\ln \mathbf{j} ) }{4n^{2}} \\& \qquad {}\times \bigl\{ n ( \mathbf{j}+\mathbf{i} ) \bigl[ \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ;r \bigr) +\theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ;r \bigr) \bigr] \\& \qquad {}+ ( \mathbf{i}-\mathbf{j} ) \bigl[ \theta _{n,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ;r \bigr) -\theta _{n,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ;r \bigr) \bigr] \bigr\} . \end{aligned}$$
(2.12)
Corollary 3
Letting
\(n=1\)
and
\(q=1\)
in Theorem
1
gives
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{ ( \ln \mathbf{i}-\ln \mathbf{j} ) }{4} \\& \qquad {}\times \bigl\{ ( \mathbf{j}+\mathbf{i} ) \bigl[ \theta _{1,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ;r \bigr) +\theta _{1,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ;r \bigr) \bigr] \\& \qquad {}+ ( \mathbf{i}-\mathbf{j} ) \bigl[ \theta _{1,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ;r \bigr) -\theta _{1,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ;r \bigr) \bigr] \bigr\} . \end{aligned}$$
(2.13)
Theorem 2
Let \(\mathfrak{K}:\Bbbk \subseteq \mathcal{R}_{+}= ( 0,\infty ) \rightarrow \mathcal{R}\) be a differentiable function on \(\Bbbk ^{\circ }\), where j, \(\mathbf{i}\in \Bbbk ^{\circ }\) with \(\mathbf{j}<\mathbf{i}\) and \(r\in \mathcal{R}\), \(r\neq 0\). Suppose that \(\mathfrak{K}^{{\prime }}\in L ( [ \mathbf{j},\mathbf{i} ] ) \) and \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically r-convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q>1\). Then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{ ( \ln \mathbf{i}-\ln \mathbf{j} ) }{2n} \bigl\{ \bigl[ R_{n} \bigl( \mathbf{j}^{\frac{q}{q-1}},\mathbf{i}^{ \frac{q}{q-1}} \bigr) \bigr] ^{1-\frac{1}{q}} \bigl[ \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}} \\& \qquad {}+ \bigl[ R_{n} \bigl( \mathbf{i}^{\frac{q}{q-1}}, \mathbf{j}^{ \frac{q}{q-1}} \bigr) \bigr] ^{1-\frac{1}{q}} \bigl[ \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}} \bigr\} . \end{aligned}$$
(2.14)
Proof
From Lemma 1 and Hölder’s inequality we have
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \biggl\{ \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{q ( n-\mathfrak{u} ) }{2n ( q-1 ) }} \mathbf{i}^{ \frac{q ( n+\mathfrak{u} ) }{2n ( q-1 ) }}\,d\mathfrak{u} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n}\mathfrak{u} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d \mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{q ( n+\mathfrak{u} ) }{2n ( q-1 ) }} \mathbf{i}^{ \frac{q ( n-\mathfrak{u} ) }{2n ( q-1 ) }}\,d\mathfrak{u} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n}\mathfrak{u} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d \mathfrak{u} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.15)
Since
$$\begin{aligned}& \int _{0}^{n}\mathfrak{u} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n}\mathfrak{u} \biggl[ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+ \biggl( \frac{n+\mathfrak{u}}{2n} \biggr) \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{ \frac{1}{r}}\,d\mathfrak{u} \\& \quad =2n\theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) , \end{aligned}$$
(2.16)
$$\begin{aligned}& \int _{0}^{n}\mathfrak{u} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n}\mathfrak{u} \biggl[ \biggl( \frac{n+\mathfrak{u}}{2n} \biggr) \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+ \biggl( \frac{n-\mathfrak{u}}{2n} \biggr) \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{ \frac{1}{r}}\,d\mathfrak{u} \\& \quad =2n\theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) , \end{aligned}$$
(2.17)
$$\begin{aligned}& \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{q ( n-\mathfrak{u} ) }{2n ( q-1 ) }} \mathbf{i}^{ \frac{q ( n+\mathfrak{u} ) }{2n ( q-1 ) }}\,d\mathfrak{u}=2nR_{n} \bigl( \mathbf{j}^{ \frac{q}{q-1}},\mathbf{i}^{\frac{q}{q-1}} \bigr) , \end{aligned}$$
(2.18)
and
$$ \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{q ( n+\mathfrak{u} ) }{2n ( q-1 ) }} \mathbf{i}^{ \frac{q ( n-\mathfrak{u} ) }{2n ( q-1 ) }}\,d\mathfrak{u}=2nR_{n} \bigl( \mathbf{i}^{ \frac{q}{q-1}},\mathbf{j}^{\frac{q}{q-1}} \bigr) . $$
(2.19)
Inequality (2.14) is proved by applying (2.16)–(2.19) in (2.15). □
Theorem 3
Let \(\mathfrak{K}:\Bbbk \subseteq \mathcal{R}_{+}= ( 0,\infty ) \rightarrow \mathcal{R}\) be a differentiable function on \(\Bbbk ^{\circ }\), where j, \(\mathbf{i}\in \Bbbk ^{\circ }\) with \(\mathbf{j}<\mathbf{i}\) and \(r\in \mathcal{R}\), \(r\neq 0\). Suppose that \(\mathfrak{K}^{{\prime }}\in L ( [ \mathbf{j},\mathbf{i} ] ) \) and \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically r-convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q>1\). Then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \bigl\{ \bigl[ \vartheta _{n} ( \mathbf{j},\mathbf{i} ) \bigr] ^{1- \frac{1}{q}} \bigl[ n ( \mathbf{j}+\mathbf{i} ) \theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \\& \qquad {}+ ( \mathbf{i}-\mathbf{j} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}}+ \bigl[ \vartheta _{n} ( \mathbf{i},\mathbf{j} ) \bigr] ^{1-\frac{1}{q}} \\& \qquad {}\times \bigl[ n ( \mathbf{j}+\mathbf{i} ) \theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \\& \qquad {}+ ( \mathbf{j}-\mathbf{i} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}} \bigr\} . \end{aligned}$$
(2.20)
Proof
From Lemma 1 and Hölder’s inequality we have
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \\& \qquad {}\times \biggl\{ \biggl( \int _{0}^{n}\mathfrak{u}^{\frac{q}{q-1}} \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n} \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u}^{\frac{q}{q-1}} \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n} \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.21)
Since \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically r-convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q>1\), we obtain
$$\begin{aligned}& \int _{0}^{n}\mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n} \biggl( \frac{n-\mathfrak{u}}{2n} \mathbf{j}+ \frac{n+\mathfrak{u}}{2n}\mathbf{i} \biggr) \biggl[ \frac{n-\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+\frac{n+\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{ \frac{1}{r}}\,d \mathfrak{u} \\& \quad =n ( \mathbf{j}+\mathbf{i} ) \theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) + ( \mathbf{i}-\mathbf{j} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \end{aligned}$$
(2.22)
and
$$\begin{aligned}& \int _{0}^{n}\mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n} \biggl( \frac{n+\mathfrak{u}}{2n} \mathbf{j}+ \frac{n-\mathfrak{u}}{2n}\mathbf{i} \biggr) \biggl[ \frac{n+\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+\frac{n-\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{ \frac{1}{r}}\,d \mathfrak{u} \\& \quad =n ( \mathbf{j}+\mathbf{i} ) \theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) + ( \mathbf{j}-\mathbf{i} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) . \end{aligned}$$
(2.23)
We also observe that
$$\begin{aligned} \int _{0}^{n}\mathfrak{u}^{\frac{q}{q-1}} \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \leq& \int _{0}^{n}\mathfrak{u}^{\frac{q}{q-1}} \biggl[ \frac{n-\mathfrak{u}}{2n}\mathbf{j}+\frac{n+\mathfrak{u}}{2n} \mathbf{i} \biggr] \,d \mathfrak{u} \\ = &\frac{n^{\frac{2q-1}{q-1}} ( q-1 ) [ ( q-1 ) \mathbf{i}+ ( 5q-3 ) \mathbf{j} ] }{2 ( 3q-2 ) ( 2q-1 ) }=\vartheta _{n} ( \mathbf{j},\mathbf{i} ), \end{aligned}$$
(2.24)
and we similarly obtain
$$ \int _{0}^{n}\mathfrak{u}^{\frac{q}{q-1}} \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u}= \frac{n^{\frac{2q-1}{q-1}} ( q-1 ) [ ( q-1 ) \mathbf{j}+ ( 5q-3 ) \mathbf{i} ] }{2 ( 3q-2 ) ( 2q-1 ) }=\vartheta _{n} ( \mathbf{i},\mathbf{j} ) . $$
(2.25)
Applying (2.22)–(2.25) in (2.21), we obtain the required inequality (2.20). □
Theorem 4
Let \(\mathfrak{K}:\Bbbk \subseteq \mathcal{R}_{+}= ( 0,\infty ) \rightarrow \mathcal{R}\) be a differentiable function on \(\Bbbk ^{\circ }\), where j, \(\mathbf{i}\in \Bbbk ^{\circ }\) with \(\mathbf{j}<\mathbf{i}\) and \(r\in \mathcal{R}\), \(r\neq 0\). Suppose that \(\mathfrak{K}^{{\prime }}\in L ( [ \mathbf{j},\mathbf{i} ] ) \) and \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically r-convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q\geq 1\). Then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{3}} \\& \qquad {}\times \bigl\{ \bigl[ 2n^{2}R_{0} ( \mathbf{j},\mathbf{i} ) -2nR_{n} ( \mathbf{j},\mathbf{i} ) \bigr] ^{1- \frac{1}{q}} \bigl[ n^{2} ( \mathbf{j}+\mathbf{i} ) \theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \\& \qquad {}-2n\mathbf{j}\theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) + ( \mathbf{j}-\mathbf{i} ) \theta _{n,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}} \\& \qquad {}+ \bigl[ 2nR_{n} ( \mathbf{j},\mathbf{i} ) \bigr] ^{1- \frac{1}{q}} \bigl[ n ( \mathbf{j}+\mathbf{i} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \\& \qquad {}+ ( \mathbf{i}-\mathbf{j} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}}+ \bigl[ 2nR_{n} ( \mathbf{i},\mathbf{j} ) \bigr] ^{1- \frac{1}{q}} \\& \qquad {}\times \bigl[ n ( \mathbf{j}+\mathbf{i} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) + ( \mathbf{i}- \mathbf{j} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}} \\& \qquad {}+ \bigl[ 2n^{2}R_{0} ( \mathbf{i},\mathbf{j} ) -2nR_{n} ( \mathbf{i},\mathbf{j} ) \bigr] ^{1-\frac{1}{q}} \bigl[ n^{2} ( \mathbf{j}+\mathbf{i} ) \theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) -2n \mathbf{i} \\& \qquad {}\times \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) + ( \mathbf{j}-\mathbf{i} ) \theta _{n,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}} \bigr\} . \end{aligned}$$
(2.26)
Proof
From Lemma 1 and the improved power-mean inequality we have
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{3}} \\& \qquad {}\times \biggl\{ \biggl( \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n} ( n- \mathfrak{u} ) \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \biggr) ^{1- \frac{1}{q}} \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}}\,d \mathfrak{u} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d \mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u} \biggr) ^{1- \frac{1}{q}} \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.27)
Since \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically r-convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q>1\), by Lemma 3 we obtain
$$\begin{aligned}& \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n} ( n-\mathfrak{u} ) \biggl( \frac{n-\mathfrak{u}}{2n}\mathbf{j}+\frac{n+\mathfrak{u}}{2n}\mathbf{i} \biggr) \biggl[ \frac{n-\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+\frac{n+\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{\frac{1}{r}}\,d\mathfrak{u} \\& \quad =n^{2} ( \mathbf{j}+\mathbf{i} ) \theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) -2n\mathbf{j}\theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \\& \qquad {}+ ( \mathbf{j}-\mathbf{i} ) \theta _{n,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) , \end{aligned}$$
(2.28)
$$\begin{aligned}& \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n} ( n-\mathfrak{u} ) \biggl( \frac{n+\mathfrak{u}}{2n}\mathbf{j}+\frac{n-\mathfrak{u}}{2n}\mathbf{i} \biggr) \biggl[ \frac{n+\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+\frac{n-\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{\frac{1}{r}}\,d\mathfrak{u} \\& \quad =n^{2} ( \mathbf{j}+\mathbf{i} ) \theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) -2n\mathbf{i}\theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \\& \qquad {}+ ( \mathbf{i}-\mathbf{j} ) \theta _{n,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) , \end{aligned}$$
(2.29)
$$\begin{aligned}& \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n}\mathfrak{u} \biggl( \frac{n-\mathfrak{u}}{2n} \mathbf{j}+\frac{n+\mathfrak{u}}{2n}\mathbf{i} \biggr) \biggl[ \frac{n-\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+\frac{n+\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{ \frac{1}{r}}\,d\mathfrak{u} \\& \quad =n ( \mathbf{j}+\mathbf{i} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \\& \qquad {}+ ( \mathbf{i}-\mathbf{j} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr), \end{aligned}$$
(2.30)
and
$$\begin{aligned}& \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n}\mathfrak{u} \biggl( \frac{n+\mathfrak{u}}{2n} \mathbf{j}+\frac{n-\mathfrak{u}}{2n}\mathbf{i} \biggr) \biggl[ \frac{n+\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+\frac{n-\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{ \frac{1}{r}}\,d\mathfrak{u} \\& \quad =n ( \mathbf{j}+\mathbf{i} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \\& \qquad {}+ ( \mathbf{j}-\mathbf{i} ) \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) . \end{aligned}$$
(2.31)
We also observe from Lemma 2 that
$$ \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u}=2n^{2}R_{0} ( \mathbf{j},\mathbf{i} ) -2nR_{n} ( \mathbf{j}, \mathbf{i} ) $$
(2.32)
and
$$ \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u}=2n^{2}R_{0} ( \mathbf{i},\mathbf{j} ) -2nR_{n} ( \mathbf{i}, \mathbf{j} ) . $$
(2.33)
Applying (2.28)–(2.33) in (2.27), we obtain the required inequality (2.26). □
Corollary 4
Suppose that the assumptions of Theorem 4are satisfied and \(q=1\). Then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{3}} \bigl\{ 2n^{2} ( \mathbf{j}+ \mathbf{i} ) \theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ;r \bigr) \\& \qquad {}+ ( n-1 ) ( \mathbf{j}-\mathbf{i} ) \bigl[ \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ;r \bigr) -\theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ;r \bigr) \bigr] \\& \qquad {}+ ( \mathbf{j}-\mathbf{i} ) \bigl[ \theta _{n,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ;r \bigr) -\theta _{n,2} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert , \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ;r \bigr) \bigr] \bigr\} . \end{aligned}$$
(2.34)
Theorem 5
Let \(\mathfrak{K}:\Bbbk \subseteq \mathcal{R}_{+}= ( 0,\infty ) \rightarrow \mathcal{R}\) be a differentiable function on \(\Bbbk ^{\circ }\), where j, \(\mathbf{i}\in \Bbbk ^{\circ }\) with \(\mathbf{j}<\mathbf{i}\) and \(r\in \mathcal{R}\), \(r\neq 0\). Suppose that \(\mathfrak{K}^{{\prime }}\in L ( [ \mathbf{j},\mathbf{i} ] ) \) and \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically r-convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q>1\). Then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{ ( 2n ) ^{2-\frac{1}{q}}} \bigl\{ \bigl[ \lambda _{n} ( \mathbf{j},\mathbf{i};p ) \bigr] ^{\frac{1}{p}} \bigl[ \theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \\& \qquad {}+\theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}}+ \bigl[ \mu _{n} ( \mathbf{j},\mathbf{i};p ) \bigr] ^{\frac{1}{p}} \\& \qquad {}\times \bigl[ \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}}+ \bigl[ \lambda _{n} ( \mathbf{i},\mathbf{j};p ) \bigr] ^{\frac{1}{p}} \\& \qquad {}\times \bigl[ \theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) + \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}} \\& \qquad {}+ \bigl[ \mu _{n} ( \mathbf{i},\mathbf{j};p ) \bigr] ^{\frac{1}{p}} \bigl[ \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) \bigr] ^{\frac{1}{q}} \bigr\} , \end{aligned}$$
(2.35)
where \(p^{-1}+q^{-1}=1\).
Proof
From Lemma 1 and the Hölder–İşcan inequality we have
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \\& \qquad {}\times \biggl\{ \biggl( \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl( \mathfrak{u}\mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) ^{p}\,d\mathfrak{u} \biggr) ^{ \frac{1}{p}} \biggl( \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u} \bigl( \mathfrak{u} \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) ^{p} \,d\mathfrak{u} \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{n} \mathfrak{u} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d \mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) ^{p}\,d\mathfrak{u} \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u} \bigl( \mathfrak{u} \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) ^{p}\,d\mathfrak{u} \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{n} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d \mathfrak{u} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.36)
Since \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically r-convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q>1\), by Lemma 3 we obtain
$$\begin{aligned}& \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n} ( 1-\mathfrak{u} ) \biggl[ \frac{n-\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+\frac{n+\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{ \frac{1}{r}}\,d\mathfrak{u} \\& \quad =2n\theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) +2n \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q};r \bigr) \end{aligned}$$
(2.37)
and
$$\begin{aligned}& \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n} ( 1-\mathfrak{u} ) \biggl[ \frac{n+\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{rq}+\frac{n-\mathfrak{u}}{2n} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \biggr] ^{ \frac{1}{r}}\,d\mathfrak{u} \\& \quad =2n\theta \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) +2n \theta _{n,1} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q};r \bigr) . \end{aligned}$$
(2.38)
We also observe that
$$\begin{aligned}& \begin{aligned}[b] \lambda _{n} ( \mathbf{j},\mathbf{i};p ) &= \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl( \mathfrak{u}\mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) ^{p}\,d \mathfrak{u}\\ & \leq \int _{0}^{n}\mathfrak{u}^{p} ( 1-\mathfrak{u} ) \biggl( \frac{n-\mathfrak{u}}{2n}\mathbf{j}^{p}+ \frac{n+\mathfrak{u}}{2n}\mathbf{i}^{p} \biggr) \,d \mathfrak{u} \\ & = \frac{n^{p+1} [ ( 3+p-n ( p+1 ) ) \mathbf{j}^{p}+ ( ( p+3 ) ( 2p+3 ) -n ( p+1 ) ( 2p+5 ) ) \mathbf{i}^{p} ] }{2 ( p+1 ) ( p+2 ) ( p+3 ) }, \end{aligned} \end{aligned}$$
(2.39)
$$\begin{aligned}& \begin{aligned}[b] \lambda _{n} ( \mathbf{i},\mathbf{j};p ) &= \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl( \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) ^{p} \,d\mathfrak{u} \\ & \leq \int _{0}^{n}\mathfrak{u}^{p} ( 1-\mathfrak{u} ) \biggl( \frac{n+\mathfrak{u}}{2n}\mathbf{j}^{p}+ \frac{n-\mathfrak{u}}{2n}\mathbf{i}^{p} \biggr) \,d \mathfrak{u} \\ & = \frac{n^{p+1} [ ( 3+p-n ( p+1 ) ) \mathbf{i}^{p}+ ( ( p+3 ) ( 2p+3 ) -n ( p+1 ) ( 2p+5 ) ) \mathbf{j}^{p} ] }{2 ( p+1 ) ( p+2 ) ( p+3 ) }, \end{aligned} \end{aligned}$$
(2.40)
$$\begin{aligned}& \begin{aligned}[b] \int _{0}^{n}\mathfrak{u} \bigl( \mathfrak{u} \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) ^{p}\,d \mathfrak{u}&\leq \int _{0}^{n}\mathfrak{u}^{p+1} \biggl( \frac{n-\mathfrak{u}}{2n}\mathbf{j}^{p}+ \frac{n+\mathfrak{u}}{2n}\mathbf{i}^{p} \biggr) \\ & = \frac{n^{p+2} [ \mathbf{j}^{p}+\mathbf{i}^{p} ( 2p+5 ) ] }{2 ( p+2 ) ( p+3 ) }=\mu _{n} ( \mathbf{j},\mathbf{i};p ), \end{aligned} \end{aligned}$$
(2.41)
and
$$\begin{aligned} \int _{0}^{n}\mathfrak{u} \bigl( \mathfrak{u} \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) ^{p}\,d \mathfrak{u} \leq& \int _{0}^{n}\mathfrak{u}^{p+1} \biggl( \frac{n+\mathfrak{u}}{2n}\mathbf{j}^{p}+ \frac{n-\mathfrak{u}}{2n}\mathbf{i}^{p} \biggr) \\ = &\frac{n^{p+2} [ \mathbf{i}^{p}+\mathbf{j}^{p} ( 2p+5 ) ] }{2 ( p+2 ) ( p+3 ) }=\mu _{n} ( \mathbf{i},\mathbf{j};p ) . \end{aligned}$$
(2.42)
Applying (2.37)–(2.42) in (2.36), we obtain the required inequality (2.35). □
Theorem 6
Let \(\mathfrak{K}:\Bbbk \subseteq \mathcal{R}_{+}= ( 0,\infty ) \rightarrow \mathcal{R}\) be a differentiable function on \(\Bbbk ^{\circ }\), where j, \(\mathbf{i}\in \Bbbk ^{\circ }\) with \(\mathbf{j}<\mathbf{i}\). Suppose that \(\mathfrak{K}^{{\prime }}\in L ( [ \mathbf{j},\mathbf{i} ] ) \) and \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically-convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q\geq 1\). Then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{2n} \bigl\{ \bigl[ R_{n} ( \mathbf{j}, \mathbf{i} ) \bigr] ^{1-\frac{1}{q}} \bigl[ R_{n} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q},\mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) \bigr] ^{\frac{1}{q}} \\& \qquad {}+ \bigl[ R_{n} ( \mathbf{i},\mathbf{j} ) \bigr] ^{1- \frac{1}{q}} \bigl[ R_{n} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q},\mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) \bigr] ^{\frac{1}{q}} \bigr\} . \end{aligned}$$
(2.43)
Proof
From Lemma 1 and the power-mean inequality we have
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \int _{0}^{n} \mathfrak{u} \bigl[ \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert + \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert \bigr] \,d\mathfrak{u} \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \biggl\{ \biggl( \int _{0}^{n}\mathfrak{u} \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u} \biggr) ^{1- \frac{1}{q}} \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.44)
Using the geometric convexity of \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) on \([ \mathbf{j},\mathbf{i} ] \) for \(q\geq 1\) and Lemma 2, we have
$$\begin{aligned}& \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \\& \quad =2n \biggl( \frac{1}{2n} \int _{0}^{n}\mathfrak{u} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{\frac{n-\mathfrak{u}}{2n}} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \biggr) \\& \quad =2nR_{n} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q},\mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) . \end{aligned}$$
(2.45)
Similarly, we have
$$\begin{aligned}& \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{ \frac{n+\mathfrak{u}}{2n}} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u} \\& \quad =2n \biggl( \frac{1}{2n} \int _{0}^{n}\mathfrak{u} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{\frac{n+\mathfrak{u}}{2n}} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u} \biggr) \\& \quad =2nR_{n} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q},\mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) . \end{aligned}$$
(2.46)
Moreover, from Lemma 2 we also obtain
$$ \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u}=2nR_{n} ( \mathbf{j},\mathbf{i} ) $$
and
$$ \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u}=2nR_{n} ( \mathbf{i},\mathbf{j} ) . $$
Using the last two inequalities, (2.45) and (2.46) in (2.44), we obtain the required inequality (2.43). □
Corollary 5
Under the assumptions of Theorem 6, if \(q=1\), then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{2n} \bigl\{ R_{n} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ,\mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert \bigr) +R_{n} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ,\mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert \bigr) \bigr\} . \end{aligned}$$
(2.47)
Theorem 7
Let \(\mathfrak{K}:\Bbbk \subseteq \mathcal{R}_{+}= ( 0,\infty ) \rightarrow \mathcal{R}\) be a differentiable function on \(\Bbbk ^{\circ }\), where j, \(\mathbf{i}\in \Bbbk ^{\circ }\) with \(\mathbf{j}<\mathbf{i}\). Suppose that \(\mathfrak{K}^{{\prime }}\in L ( [ \mathbf{j},\mathbf{i} ] ) \) and \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically-convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q>1\). Then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{2n} \bigl\{ \bigl[ R_{n} \bigl( \mathbf{j}^{\frac{q}{q-1}},\mathbf{i}^{\frac{q}{q-1}} \bigr) \bigr] ^{1-\frac{1}{q}} \bigl[ R_{n} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) \bigr] ^{\frac{1}{q}} \\& \qquad {}+ \bigl[ R_{n} \bigl( \mathbf{i}^{\frac{q}{q-1}}, \mathbf{j}^{ \frac{q}{q-1}} \bigr) \bigr] ^{1-\frac{1}{q}} \bigl[ R_{n} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) \bigr] ^{\frac{1}{q}} \bigr\} . \end{aligned}$$
(2.48)
Proof
From Lemma 1 and the Hölder inequality we have
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \int _{0}^{n} \mathfrak{u} \bigl[ \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert + \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert \bigr] \,d\mathfrak{u} \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \biggl\{ \biggl( \int _{0}^{n}\mathfrak{u} \mathbf{j}^{ \frac{q ( n-\mathfrak{u} ) }{2n ( q-1 ) }}\mathbf{i}^{ \frac{q ( n+\mathfrak{u} ) }{2n ( q-1 ) }}\,d\mathfrak{u} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n}\mathfrak{u} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{q ( n+\mathfrak{u} ) }{2n ( q-1 ) }} \mathbf{i}^{ \frac{q ( n-\mathfrak{u} ) }{2n ( q-1 ) }}\,d\mathfrak{u} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n}\mathfrak{u} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d \mathfrak{u} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.49)
Using the geometric convexity of \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) on \([ \mathbf{j},\mathbf{i} ] \) for \(q>1\), we have
$$\begin{aligned}& \int _{0}^{n}\mathfrak{u} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n}\mathfrak{u} \bigl( \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{\frac{n+\mathfrak{u}}{2n}}\,d \mathfrak{u}=2nR_{n} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) . \end{aligned}$$
(2.50)
Similarly, we have
$$\begin{aligned} \int _{0}^{n}\mathfrak{u} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \leq& \int _{0}^{n} \mathfrak{u} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{ \frac{n+\mathfrak{u}}{2n}} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}}\,d \mathfrak{u} \\ =&2nR_{n} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) . \end{aligned}$$
(2.51)
Also, we observe that
$$ \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{q ( n-\mathfrak{u} ) }{2n ( q-1 ) }} \mathbf{i}^{ \frac{q ( n+\mathfrak{u} ) }{2n ( q-1 ) }}\,d\mathfrak{u}=2nR_{n} \bigl( \mathbf{j}^{ \frac{q}{q-1}},\mathbf{i}^{\frac{q}{q-1}} \bigr) $$
(2.52)
and
$$ \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{q ( n+\mathfrak{u} ) }{2n ( q-1 ) }} \mathbf{i}^{ \frac{q ( n-\mathfrak{u} ) }{2n ( q-1 ) }}\,d\mathfrak{u}=2nR_{n} \bigl( \mathbf{i}^{ \frac{q}{q-1}},\mathbf{j}^{\frac{q}{q-1}} \bigr) . $$
(2.53)
Using (2.50)–(2.53) in (2.49), we obtain the required inequality (2.48). □
Theorem 8
Let \(\mathfrak{K}:\Bbbk \subseteq \mathcal{R}_{+}= ( 0,\infty ) \rightarrow \mathcal{R}\) be a differentiable function on \(\Bbbk ^{\circ }\), where j, \(\mathbf{i}\in \Bbbk ^{\circ }\) with \(\mathbf{j}<\mathbf{i}\). Suppose that \(\mathfrak{K}^{{\prime }}\in L ( [ \mathbf{j},\mathbf{i} ] ) \) and \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically-convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q>1\). Then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{ ( \ln \mathbf{i}-\ln \mathbf{j} ) }{2^{2-\frac{1}{q}}} \biggl( \frac{q-1}{2q-1} \biggr) ^{1-\frac{1}{q}} \bigl\{ \bigl[ T_{0} \bigl( \mathbf{j}^{q} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q},\mathbf{i}^{q} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) \bigr] ^{\frac{1}{q}} \\& \qquad {}+ \bigl[ T_{0} \bigl( \mathbf{i}^{q} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \mathbf{j}^{q} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) \bigr] ^{\frac{1}{q}} \bigr\} . \end{aligned}$$
(2.54)
Proof
From Lemma 1 and Hölder’s inequality we have
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \int _{0}^{n} \mathfrak{u} \bigl[ \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}}\mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) + \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr] \,d\mathfrak{u} \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \biggl( \int _{0}^{n}\mathfrak{u}^{\frac{q}{q-1}} \,d\mathfrak{u} \biggr) ^{1-\frac{1}{q}} \biggl\{ \biggl( \int _{0}^{n} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) ^{q} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d \mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n} \bigl( \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) ^{q} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d \mathfrak{u} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.55)
Since \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q>1\), we obtain
$$\begin{aligned}& \int _{0}^{n} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) ^{q} \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) ^{q} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \\& \quad = \int _{0}^{n} \bigl( \mathbf{j}^{q} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}} \bigl( \mathbf{i}^{q} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \\& \quad =2nT_{0} \bigl( \mathbf{j}^{q} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \mathbf{i}^{q} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) \end{aligned}$$
(2.56)
and
$$\begin{aligned}& \int _{0}^{n} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) ^{q} \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) ^{q} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{ \frac{n+\mathfrak{u}}{2n}} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u} \\& \quad = \int _{0}^{n} \bigl( \mathbf{j}^{q} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{ \frac{n+\mathfrak{u}}{2n}} \bigl( \mathbf{i}^{q} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u} \\& \quad =2nT_{0} \bigl( \mathbf{i}^{q} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \mathbf{j}^{q} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) . \end{aligned}$$
(2.57)
Applying (2.56) and (2.57) in (2.55), we obtain the required inequality (2.54). □
Theorem 9
Let \(\mathfrak{K}:\Bbbk \subseteq \mathcal{R}_{+}= ( 0,\infty ) \rightarrow \mathcal{R}\) be a differentiable function on \(\Bbbk ^{\circ }\), where j, \(\mathbf{i}\in \Bbbk ^{\circ }\) with \(\mathbf{j}<\mathbf{i}\). Suppose that \(\mathfrak{K}^{{\prime }}\in L ( [ \mathbf{j},\mathbf{i} ] ) \) and \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q\geq 1\). Then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{2n^{2}} \bigl\{ \bigl[ nR_{0} ( \mathbf{j},\mathbf{i} ) -R_{n} ( \mathbf{j}, \mathbf{i} ) \bigr] ^{1-\frac{1}{q}} \\& \qquad {}\times \bigl[ nR_{0} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) -R_{n} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) \bigr] ^{\frac{1}{q}} \\& \qquad {}+ \bigl[ R_{n} ( \mathbf{j},\mathbf{i} ) \bigr] ^{1- \frac{1}{q}} \bigl[ R_{n} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) \bigr] ^{\frac{1}{q}}+ \bigl[ R_{n} ( \mathbf{j},\mathbf{i} ) \bigr] ^{1-\frac{1}{q}} \\& \qquad {}\times \bigl[ R_{n} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) \bigr] ^{\frac{1}{q}}+ \bigl[ nR_{0} ( \mathbf{i}, \mathbf{j} ) -R_{n} ( \mathbf{i},\mathbf{j} ) \bigr] ^{1-\frac{1}{q}} \\& \qquad {}\times \bigl[ nR_{0} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q},\mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) -R_{n} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) \bigr] ^{\frac{1}{q}} \bigr\} . \end{aligned}$$
(2.58)
Proof
From Lemma 1 and the improved power-mean inequality we have
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{3}} \\& \qquad {}\times \biggl\{ \biggl( \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n} ( n- \mathfrak{u} ) \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \biggr) ^{1- \frac{1}{q}} \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}}\,d \mathfrak{u} \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d \mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u} \biggr) ^{1- \frac{1}{q}} \biggl( \int _{0}^{n}\mathfrak{u}\mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.59)
Since \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q\geq 1\), using Lemma 3, we obtain
$$\begin{aligned}& \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n} ( n-\mathfrak{u} ) \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{\frac{n-\mathfrak{u}}{2n}} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \\& \quad =2n^{2}R_{0} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) -2nR_{n} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q},\mathbf{i} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) , \end{aligned}$$
(2.60)
$$\begin{aligned}& \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n} ( n-\mathfrak{u} ) \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{\frac{n+\mathfrak{u}}{2n}} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u} \\& \quad =2n^{2}R_{0} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) -2nR_{n} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q},\mathbf{j} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) , \end{aligned}$$
(2.61)
$$\begin{aligned}& \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n}\mathfrak{u} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{ \frac{n+\mathfrak{u}}{2n}} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{rq} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u} \\& \quad =2nR_{n} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q},\mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr), \end{aligned}$$
(2.62)
and
$$\begin{aligned}& \int _{0}^{n}\mathfrak{u}\mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n}\mathfrak{u} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \\& \quad =2nR_{n} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q},\mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) . \end{aligned}$$
(2.63)
We also observe from Lemma 2 that
$$ \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u}=2n^{2}R_{0} ( \mathbf{j},\mathbf{i} ) -2nR_{n} ( \mathbf{j}, \mathbf{i} ) $$
(2.64)
and
$$ \int _{0}^{n} ( n-\mathfrak{u} ) \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u}=2n^{2}R_{0} ( \mathbf{i},\mathbf{j} ) -2nR_{n} ( \mathbf{i}, \mathbf{j} ). $$
(2.65)
Applying (2.60)–(2.65) in (2.59), we obtain the required inequality (2.58). □
Corollary 6
Under the assumptions of Theorem 9and \(q=1\), we have the following inequality:
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{2n} \bigl\{ R_{0} \bigl( \mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ,\mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert \bigr) +R_{0} \bigl( \mathbf{i} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ,\mathbf{j} \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert \bigr) \bigr\} . \end{aligned}$$
(2.66)
Theorem 10
Let \(\mathfrak{K}:\Bbbk \subseteq \mathcal{R}_{+}= ( 0,\infty ) \rightarrow \mathcal{R}\) be a differentiable function on \(\Bbbk ^{\circ }\), where j, \(\mathbf{i}\in \Bbbk ^{\circ }\) with \(\mathbf{j}<\mathbf{i}\). Suppose that \(\mathfrak{K}^{{\prime }}\in L ( [ \mathbf{j},\mathbf{i} ] ) \) and \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q>1\). Then
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{ ( 2n ) ^{2-\frac{1}{q}}} \bigl\{ \bigl[ \lambda _{n} ( \mathbf{j},\mathbf{i};p ) \bigr] ^{\frac{1}{p}} \bigl[ T_{0} \bigl( \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) \\& \qquad {}+R_{n} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) \bigr] ^{ \frac{1}{q}}+ \bigl[ \mu _{n} ( \mathbf{j},\mathbf{i};p ) \bigr] ^{\frac{1}{p}} \\& \qquad {}\times \bigl[ R_{n} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) \bigr] ^{ \frac{1}{q}}+ \bigl[ \lambda _{n} ( \mathbf{i},\mathbf{j};p ) \bigr] ^{\frac{1}{p}} \\& \qquad {}\times \bigl[ T_{0} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) +R_{n} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) \bigr] ^{\frac{1}{q}} \\& \qquad {}+ \bigl[ \mu _{n} ( \mathbf{i},\mathbf{j};p ) \bigr] ^{\frac{1}{p}} \bigl[ R_{n} \bigl( \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) \bigr] ^{\frac{1}{q}} \bigr\} , \end{aligned}$$
(2.67)
where \(p^{-1}+q^{-1}=1\).
Proof
From Lemma 1 and the Hölder–İşcan inequality we have
$$\begin{aligned}& \biggl\vert \frac{\mathfrak{K} ( \mathbf{i} ) +\mathfrak{K} ( \mathbf{j} ) }{2}-\frac{1}{\ln \mathbf{i}-\ln \mathbf{j}} \int _{ \mathbf{j}}^{\mathbf{i}} \frac{\mathfrak{K} ( \mathfrak{x}_{1} ) }{\mathfrak{x}_{1}}\,d \mathfrak{x}_{1} \biggr\vert \\& \quad \leq \frac{\ln \mathbf{i}-\ln \mathbf{j}}{4n^{2}} \\& \qquad {}\times \biggl\{ \biggl( \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl( \mathfrak{u}\mathbf{j}^{\frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) ^{p}\,d\mathfrak{u} \biggr) ^{ \frac{1}{p}} \biggl( \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u} \bigl( \mathfrak{u} \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) ^{p} \,d\mathfrak{u} \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{n} \mathfrak{u} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d \mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) ^{p}\,d\mathfrak{u} \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{n}\mathfrak{u} \bigl( \mathfrak{u} \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) ^{p}\,d\mathfrak{u} \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{n} \bigl\vert \mathfrak{K}^{{\prime }} \bigl( \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d \mathfrak{u} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.68)
Since \(\vert \mathfrak{K}^{{\prime }} \vert ^{q}\) is geometrically convex on \([ \mathbf{j},\mathbf{i} ] \) for \(q>1\), using Lemma 2, we obtain
$$\begin{aligned}& \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n-\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n+\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{\frac{n-\mathfrak{u}}{2n}} \bigl( \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n+\mathfrak{u}}{2n}}\,d\mathfrak{u} \\& \quad =2nT_{0} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) +2nR_{n} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) \end{aligned}$$
(2.69)
and
$$\begin{aligned}& \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl\vert \mathfrak{K}^{{ \prime }} \bigl( \mathbf{j}^{\frac{n+\mathfrak{u}}{2n}} \mathbf{i}^{ \frac{n-\mathfrak{u}}{2n}} \bigr) \bigr\vert ^{q}\,d\mathfrak{u} \\& \quad \leq \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) ^{\frac{n+\mathfrak{u}}{2n}} \bigl( \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{i} ) \bigr\vert ^{q} \bigr) ^{ \frac{n-\mathfrak{u}}{2n}}\,d\mathfrak{u} \\& \quad =2nT_{0} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{ \prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) +2nR_{n} \bigl( \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{i} ) \bigr\vert ^{q}, \bigl\vert \mathfrak{K}^{{\prime }} ( \mathbf{j} ) \bigr\vert ^{q} \bigr) . \end{aligned}$$
(2.70)
We also observe that
$$\begin{aligned}& \begin{aligned}[b] \lambda _{n} ( \mathbf{j},\mathbf{i};p ) &= \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl( \mathfrak{u}\mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) ^{p}\,d \mathfrak{u} \\ & \leq \int _{0}^{n}\mathfrak{u}^{p} ( 1-\mathfrak{u} ) \biggl( \frac{n-\mathfrak{u}}{2n}\mathbf{j}^{p}+ \frac{n+\mathfrak{u}}{2n}\mathbf{i}^{p} \biggr) \,d \mathfrak{u} \\ & = \frac{n^{p+1} [ ( 3+p-n ( p+1 ) ) \mathbf{j}^{p}+ ( ( p+3 ) ( 2p+3 ) -n ( p+1 ) ( 2p+5 ) ) \mathbf{i}^{p} ] }{2 ( p+1 ) ( p+2 ) ( p+3 ) }, \end{aligned} \end{aligned}$$
(2.71)
$$\begin{aligned}& \begin{aligned}[b] \lambda _{n} ( \mathbf{i},\mathbf{j};p ) &= \int _{0}^{n} ( 1-\mathfrak{u} ) \bigl( \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) ^{p} \,d\mathfrak{u} \\ & \leq \int _{0}^{n}\mathfrak{u}^{p} ( 1-\mathfrak{u} ) \biggl( \frac{n+\mathfrak{u}}{2n}\mathbf{j}^{p}+ \frac{n-\mathfrak{u}}{2n}\mathbf{i}^{p} \biggr) \,d \mathfrak{u} \\ & = \frac{n^{p+1} [ ( 3+p-n ( p+1 ) ) \mathbf{i}^{p}+ ( ( p+3 ) ( 2p+3 ) -n ( p+1 ) ( 2p+5 ) ) \mathbf{j}^{p} ] }{2 ( p+1 ) ( p+2 ) ( p+3 ) }, \end{aligned} \end{aligned}$$
(2.72)
$$\begin{aligned}& \begin{aligned}[b] \int _{0}^{n}\mathfrak{u} \bigl( \mathfrak{u} \mathbf{j}^{ \frac{n-\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n+\mathfrak{u}}{2n}} \bigr) ^{p}\,d \mathfrak{u}&\leq \int _{0}^{n}\mathfrak{u}^{p+1} \biggl( \frac{n-\mathfrak{u}}{2n}\mathbf{j}^{p}+ \frac{n+\mathfrak{u}}{2n}\mathbf{i}^{p} \biggr) \\ & = \frac{n^{p+2} [ \mathbf{j}^{p}+\mathbf{i}^{p} ( 2p+5 ) ] }{2 ( p+2 ) ( p+3 ) }=\mu _{n} ( \mathbf{j},\mathbf{i};p ), \end{aligned} \end{aligned}$$
(2.73)
and
$$\begin{aligned} \int _{0}^{n}\mathfrak{u} \bigl( \mathfrak{u} \mathbf{j}^{ \frac{n+\mathfrak{u}}{2n}}\mathbf{i}^{\frac{n-\mathfrak{u}}{2n}} \bigr) ^{p}\,d \mathfrak{u} \leq& \int _{0}^{n}\mathfrak{u}^{p+1} \biggl( \frac{n+\mathfrak{u}}{2n}\mathbf{j}^{p}+ \frac{n-\mathfrak{u}}{2n}\mathbf{i}^{p} \biggr) \\ = &\frac{n^{p+2} [ \mathbf{i}^{p}+\mathbf{j}^{p} ( 2p+5 ) ] }{2 ( p+2 ) ( p+3 ) }=\mu _{n} ( \mathbf{i},\mathbf{j};p ) . \end{aligned}$$
(2.74)
Applying (2.69)–(2.74) in (2.68), we obtain the required inequality (2.67). □
Remark 4
From Lemmas 4 and 5 it obviously follows that for \(n=1\), the results presented in this paper provide improvements of the results established in [25].