- Research
- Open access
- Published:
On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria
Advances in Difference Equations volume 2021, Article number: 367 (2021)
Abstract
In this paper, we consider a nonlinear sequential q-difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In this direction, we derive some criteria and conditions of the existence and uniqueness of solutions to a given Caputo fractional q-difference boundary value problem. Some pure techniques based on condensing operators and Sadovskii’s measure and the eigenvalue of an operator are employed to prove the main results. Also, the Ulam–Hyers stability and generalized Ulam–Hyers stability are investigated. We examine our results by providing two illustrative examples.
1 Introduction
In several areas of sciences, such as biology, chemistry, economics, physics, and engineering, fractional calculus and its relevant differential equations and BVPs have been used extensively [1–3]. Indeed, fractional derivatives are not only a generalization of ordinary derivatives, but also they explain dynamical behavior of various physical processes specifically and effectively (real life phenomena) in contrast to integer order derivatives. References [4–18] are available for some improvements on the fractional differential equations theory.
By virtue of developments in fractional quantum calculus (q-FC), a number of scientists and researchers [19, 20] were attracted to a study of fractional q-difference equations, beginning in the nineteenth century, and wide interest lately [21–23].
In 2007, Atici et al. [24] studied some notions in relation to fractional q-calculus on time scales. Then in 2012, Annaby and Mansour presented their investigations by publishing a book on equations and BVPs in the context of fractional q-calculus [25]. Jarad et al. [26] turned to the stability notion on q-fractional non-autonomous systems and after that, Abdeljawad et al. [27] introduced Gronwall-type inequality in q-operator settings. By combining the two above notions, Butt et al. [28] investigated Ulam stability for a Caputo delay q-difference equation by means of q-Gronwall-type inequality. Also, some fascinating insights concerning IVPs and BVPs containing q-difference equations can be found in [29–35] and the references therein. Ahmad, Nieto, Alsaedi and Al-Hutami [36] turned to the q-difference FBVP with nonlocal integral conditions and implemented an existence analysis on the solutions of the proposed q-BVP which takes the format
where \(f\in C([0, 1]\times \mathbb{R}, \mathbb{R})\), \(\rho , \beta \in (0, 1]\), \(q\in (0, 1)\), \(b, d_{1}, d_{2} \in \mathbb{R}\) and \({{}^{C}\mathcal{D}}_{q}^{\rho }\), \({{}^{C}\mathcal{D}}_{q}^{\beta }\) denote the q-fractional derivatives in Caputo sense of orders ρ and β.
In 2014, Ahmad et al. [37] studied the existence criteria of the following q-difference equation involving two nonlinear terms and four-point nonlocal boundary conditions:
in which \(f, g\in C([0, 1]\times \mathbb{R}, \mathbb{R})\), \(\rho , \beta \in (0, 1]\), \(q\in (0, 1)\), \(b, m, n, w_{1}, w_{2}, k_{1}, k_{2} \in \mathbb{R}\), \(c_{1}, c_{2} \in (0, 1)\) and \({{}^{C}\mathcal{D}}_{q}^{\rho }\), \({{}^{C}\mathcal{D}}_{q}^{\beta }\) denotes the q-fractional derivatives in Caputo sense and \(I_{q}^{\gamma }\) denotes the fractional q-integral in Riemann–Liouville sense of order \(\gamma \in (0, 1)\).
In continuation to the investigation of the q-variant of fractional problems and inspired by the aforementioned work, we aim to examine this area from another angle. Several known methods of functional analysis are used to establish required results on the existence of solutions for a class of q-difference problem. More specifically, we consider the sequential four-point Caputo fractional q-difference boundary value problem (q-CFBVP) of the format
where \({ \mathcal{D}}_{q}^{\mu }\) is the μth-q-difference derivative in the Caputo structure with \(\mu \in \{ \gamma , \beta , \alpha \}\) such that \(0 < \alpha , \beta \leq 1\), \(0 <\gamma \leq 1\) and \(I_{q}^{\theta }\) is the θth-q-difference integral in the Riemann–Liouville structure with \(\theta > 0\) subject to \(\theta \in \{\sigma _{1}, \sigma _{2}\}\) and also \(f,g: \mathrm{J}\times \mathbb{R} \longrightarrow \mathbb{R} \) are continuous functions. \(a_{1}\), \(a_{2}\), \(b_{1}\), \(b_{2}\), \(\lambda _{1}\), \(\lambda _{2}\) are suitably chosen constants in \(\mathbb{R}^{+}\).
Regarding to the novelty of the paper, in comparison to above q-problems, our supposed sequential q-CFBVP is more general. Under the given boundary value conditions, we have used both Caputo and Riemann–Liouville q-fractional operators in four different points of domain of the unknown solution function u simultaneously, in which the linear combinations of the unknown function and its fractional derivative is corresponding to a multiple of q-Riemann–Liouville integral in two mid-points. In this paper, we have designed an extended form of Langevin equations by providing a nonlinear function g in the left-side hand of the given boundary value problem (3). Also, to prove the existence of solutions for such an applied q-problem, we shall utilize some pure notions of functional analysis based on the measure of non-compactness, condensing operators and eigenvalue of the operator, which have been used in papers limited in this regard so far and this distinguishes our research from the work of others. Moreover, we here emphasize that this paper may have useful and effective applications in physics and quantum mechanics such as Langevin systems in the context of quantum operators.
The remaining part of this paper is organized as follows: Sect. 2 is devoted to the primitive notions of q-FC. At first, in Sect. 3, we give an auxiliary lemma which provides the solution of the supposed q-CFBVP (3) and then based on the obtained integral equation, by using fixed point theorems due to Sadovski, Krasnoselskii–Zabreiko and O’Regan, we establish the existence of solutions for the q-CFBVP (3) and also for its uniqueness, we utilize the famous Banach principle. In Sect. 4, the stability criteria of Ulam–Hyers type and its generalized type are checked. Additionally, in Sect. 5, we provide two examples which ensure the usability of the results presented in Sect. 3. The manuscript is ended by our conclusions in Sect. 6.
2 Preliminaries regarding q-operators
We collect some important basic notions of q-FC in this section. For details, we refer to [19, 21, 38, 39]. Let \(q \in (0,1)\). A q-real number is denoted by \([m]_{q}\) and is defined as
The q-power function \((m-n)^{k}\) with \(m,n \in \mathbb{R}\) is
and, if \(\beta \in \mathbb{R}\), then
On the other side, \([c(m-n)]^{(\beta )}=c^{\beta }(m-n)^{(\beta )}\) holds for \(c\in \mathbb{R}\) and also notice that \(m^{(\beta )}=m^{\beta }\) if \(n=0\). The q-Gamma function is given by
and satisfies \(\Gamma _{q}(\alpha +1)=[\alpha ]_{q} \Gamma _{q}(\alpha )\).
The 1st-q-derivative of an arbitrary mapping ϕ is defined by the following rule:
and for the higher orders, it becomes
The 1st-q-integral of an arbitrary mapping ϕ given on the interval \([0, n]\) is given by
If \(m \in [0, n]\), then
Similarly, for the higher orders, it becomes
For two first order q-operators \(D_{q}\) and \(I_{q}\), we have
Here, we assemble some definitions about such q-operators from the fractional point of view.
Definition 1
([39])
Let \(\alpha \geq 0\). The αth-q-integral of the Riemann–Liouville type for ϕ defined on \([0,\infty )\) is given by \(I_{q}^{0} \phi (t)= \phi (t)\) and
Definition 2
([19])
The Caputo αth-q-derivative for an absolutely continuous mapping ϕ is formulated by
where \([\alpha ]\) denotes the integer part of α.
For more information on the fractional q-operators, we refer the reader to [38].
Lemma 3
([19])
Let \(\alpha , \beta \in \mathbb{R}_{+}\). Then we have the following formulas:
-
(1)
\(I_{q}^{\alpha } I_{q}^{\beta } \phi (t)=I_{q}^{a+\beta } \phi (t)\);
-
(2)
\(D_{q}^{\alpha } I_{q}^{\alpha } \phi (t)=\phi (t)\).
Lemma 4
([40])
Let \(\alpha \in {\mathbb{R}}_{+}\) and \(\beta \in (-1,\infty )\). One has
In particular, if \(\phi \equiv 1\), then
Lemma 5
([19])
Let \(\alpha , \sigma >0\). Then
Lemma 6
Let \(k -1 < \alpha < k\). Then
For the homogeneous q-difference equation \(D_{q}^{\alpha }\phi (t)=0\), the general series solution by Lemma 6 is given as \(\phi (t) = \mu _{0} + \mu _{1} t + \mu _{2} t^{2} + \cdots + \mu _{k -1} t^{k -1}\) via \(\mu _{j} \in \mathbb{R}\) and \(k = [ \alpha ] + 1\) [19]. So, we have
3 Results regarding existence property
In the present section, before moving to our fundamental results, we define \(\Vert \cdot \Vert \) on \(X = C(J,\mathbb{R})\) as \(\|u\|=\sup_{t \in J}|u(t)| \), which in this phase, X transforms into a Banach space. Now, in the first place, we provide the next auxiliary lemma.
Lemma 7
Let \(\psi \in C(\mathrm{J},\mathbb{R})\), \(\alpha , \beta , \gamma \in (0,1)\), \(\sigma _{1}, \sigma _{2} >0\), \(a_{1},a_{2},b_{1},b_{2},\lambda _{1},\lambda _{2} \in \mathbb{R}^{+}\) and \(g_{u}(t) = g(t,u(t))\). Then the solution of the linear sequential four-point q-CFBVP defined by
is given by
where
and Λ is given by
Proof
By using Lemma 6, we obtain the integral equation corresponding to (4):
Using the given boundary conditions in (4), we may obtain
for \(i=1,2\) and
By categorizing similar terms, we obtain the expressions
and
Therefore, from (9) and (10), we get
and, by inserting \(k_{0}\) into (9), we obtain
Substituting the value of \(k_{0}\), \(k_{1}\) in (8), we get (5), which completes the proof. □
Note that, for simplicity, we set \(g(t,u(t)) = g_{u}(t)\) and \(f(t, u(t))=f_{u}(t)\) throughout the manuscript.
3.1 The first existence criterion
In this subsection, we prove an existence result for the sequential four-point q-CFBVP (3) by making use of Sadovskii’s fixed-point theorem. Before moving towards it, we would like to recall several auxiliary facts which are our main tools. X is supposed as a Banach space.
Definition 8
Consider a bounded subset M of \((X, d)\). The Kuratowski measure of non-compactness, denoted by \(\alpha (M)\), is defined by
where \(D(M_{i}) = \sup \{ \vert u-\tilde{u} \vert : u, \tilde{u} \in M_{i} \}\).
Definition 9
([41])
Consider a bounded and continuous function \(\Phi : \operatorname{Dom}(\Phi ) \subseteq X \rightarrow X\) on X. For an arbitrary bounded set \(M \subset \operatorname{Dom}(\Phi )\), the map Φ is condensing if
in which α is introduced above.
Lemma 10
([42])
Let \(\mathcal{K}_{1}, \mathcal{K}_{2}: E \subseteq X \rightarrow X\). The operator \(\mathcal{K}_{1}+\mathcal{K}_{2}\) is condensing if
-
i.
\(\mathcal{K}_{1}\) is k-contraction; that is, \(\forall u, v \in E\) and \(\exists k \in (0,1)\), so that
$$ \Vert \mathcal{K}_{1} u-\mathcal{K}_{1} v \Vert \leq k \Vert u-v \Vert ; $$ -
ii.
\(\mathcal{K}_{2}\) is compact.
Theorem 11
([43])
Consider the bounded, closed and convex subset B of X and the condensing mapping \(\Phi : B \rightarrow B\). Then Φ has a fixed point.
From now on, we put
and
Theorem 12
Consider the following assertions:
- \((\mathbf{B}_{1})\):
-
\(\exists L>0\) so that \(|f_{u}(t)-f_{v}(t)| \leq L|u(t)-v(t)|\), \(\forall t \in J\), \(u, v \in \mathbb{R}\);
- \((\mathbf{B}_{2})\):
-
\(|f_{u}(t)| \leq \sigma (t)\) and \(|g_{u}(t)| \leq \rho (t)\), where \(\sigma , \rho \in C (J, \mathbb{R}^{+} )\).
Then the sequential four-point q-CFBVP (3) has a solution on J if \(Q:=L \Theta _{1}<1 \), by introducing \(\Theta _{1}\) as (11).
Proof
Consider a bounded, closed and convex subset \(B_{r}=\{u \in X :\|u\| \leq r\}\) of \(X = C(J, \mathbb{R})\) for a fixed constant r. With regard to Lemma 7, define \(\mathcal{K}: X \rightarrow X\) as follows:
We split the operator \(\mathcal{K}\) on the set \(B_{r}\) into \(\mathcal{K}=\mathcal{K}_{1}+\mathcal{K}_{2}\), where
and
We want to prove that the operators \(\mathcal{K}_{1}\) and \(\mathcal{K}_{2}\) follow all the assertions of Theorem 11. We proceed to implement the proof in four steps.
Step 1: \(\mathcal{K} B_{r} \subset B_{r}\)
Let us select r so that \(r \geq \|\sigma \| \Theta _{1}+\|\rho \| \Theta _{2}\), where \(\Theta _{2}\), \(\Theta _{1}\) are given by (11) and (12) and \(\Vert \sigma \Vert = \sup_{t\in J} \vert \sigma (t) \vert \) and \(\Vert \rho \Vert = \sup_{t\in J} \vert \rho (t) \vert \). For any \(u \in B_{r}\), we have
which implies that \(\mathcal{K} B_{r} \subset B_{r}\).
Step 2: \(\mathcal{K}_{2}\) is compact
In view of Step 1, we observe that the operator \(\mathcal{K}_{2}\) is uniformly bounded; indeed for any \(u \in B_{r}\):
Now, take \(t_{1}, t_{2} \in J\) by assuming \(t_{1}< t_{2}\) and \(u \in B_{r}\). Hence we have
The right-hand side of (16) tends to zero (not depending upon u) as \(t_{2} \rightarrow t_{1} \). This shows that \(\mathcal{K}_{2}\) is equicontinuous. From the above reasons, it is clear that \(\mathcal{K}_{2}\) is relatively compact on \(B_{r}\). Application of the Arzelà–Ascoli theorem proves the compactness of \(\mathcal{K}_{2}\) on \(B_{r}\).
Step 3: \(\mathcal{K}_{1}\) is Q-contractive.
From \((\mathbf{B}_{1} )\) and \((\mathbf{B}_{2} )\) and for each \(u,v \in B_{r}\), we have
So, \(\Vert \mathcal{K}_{1} u-\mathcal{K}_{1} v\Vert \leq L\Theta _{1} \Vert u-v\Vert \). Thus \(\mathcal{K}_{1}\) is Q-contractive because of \(Q:=L\Theta _{1}<1\).
Step 4: \(\mathcal{K}\) is condensing.
As \(\mathcal{K}_{1}\) and \(\mathcal{K}_{2}\) are continuous Q–contraction and compact, respectively, thus by Lemma 10, \(\mathcal{K}: B_{r} \rightarrow B_{r}\) with \(\mathcal{K}=\mathcal{K}_{1}+\mathcal{K}_{2}\) is a condensing map on \(B_{r}\). From the above arguments, by Theorem 11, we conclude that the map \(\mathcal{K}\) has a fixed point, which leads to the existence of at least one solution for the sequential four-point q-CFBVP (3) in X. □
3.2 The second existence criterion
We now use another fixed point result due to Krasnoselskii–Zabreiko to demonstrate the following existence criterion for the sequential four-point q-CFBVP (3).
Theorem 13
([44])
Consider a completely continuous map \(\mathcal{K}\) on a Banach space X. If a bounded linear map \(\mathcal{L}\) exists on X so that 1 is not an eigenvalue of it and
then \(\mathcal{K}\) has a fixed point in X.
Theorem 14
Consider the following assertions:
-
(H1)
\(f: J \times \mathbb{R} \rightarrow \mathbb{R}\) is continuous and for some \(t \in J\), \(f(t, 0) \neq 0\) and
$$ \lim_{\|u\| \rightarrow \infty } \frac{f(t, u)}{u}=\lambda (t). $$(17) -
(H2)
The function \(g: J \times \mathbb{R} \rightarrow \mathbb{R}\) is continuous and \(\exists A\in \mathbb{R}_{+} \) so that
$$ \bigl\vert g \bigl(t, u(t)\bigr) \bigr\vert \leq A \bigl\vert u(t) \bigr\vert . $$
Then there exists at least one solution for the sequential four-point q-CFBVP (3) on J such that
where \(\Theta _{1}\) and \(\Theta _{2}\) are, respectively, given by (11) and (12).
Proof
Consider a sequence \(\{u_{n} \} \subset B_{r} \) which converges to u. We know that f and g are continuous, so, by letting \(n\to \infty \), we get
Thus, for \(t \in J\), we write
Therefore the right-hand side of (19) tends to zero. Therefore, the continuity of \(\mathcal{K}\) is established. Now, for \(r>0\), we set \(N=\{u \in C(J,\mathbb{R});\|u\| \leq r\}\) and \(\|f^{*}\|=\sup_{(t,u)\in J\times N} \vert f_{u}(t) \vert \). Thus,
which yields \(\|\mathcal{K} u\| \leq \Theta _{1}\|f^{*}\|+A\Theta _{2} r\). This shows the uniformly boundedness of \(\mathcal{K}\). We now claim that \(\mathcal{K}\) is equicontinuous.
Let \(t_{1}, t_{2} \in J\) via \(t_{1}< t_{2}\). Then, by setting \(\|f^{*}\|=\sup_{(t,u)\in J\times N} \vert f_{u}(t) \vert \), we obtain
It is clear that \(\vert \mathcal{K} u (t_{2} )-\mathcal{K}u (t_{1} ) \vert \rightarrow 0\) as \(t_{2} \rightarrow t_{1}\) independent of u. In consequence, from the above arguments, \(\mathcal{K}\) is relatively compact on N. Application of the Arzelà–Ascoli theorem proves the compactness of \(\mathcal{K}\) on N.
Now, by considering the sequential four-point q-CFBVP (3) to be linear by taking \(f_{u}(t)=f(t, u(t))=\lambda (t) u(t)\), the operator \(\mathcal{L}\), by Lemma 7, is formulated by
Our next claim is that 1 is not an eigenvalue of \(\mathcal{L}\). If it is so, by (18), we estimate
which is not possible. Hence we established our claim.
Finally, we show that \(\|\mathcal{K}(u)-\mathcal{L}(u)\|/\|u\|\) vanishes as \(\|u\| \rightarrow \infty \). For \(t \in J\), one may write
This means that
By (17) and letting \(\|u\| \rightarrow \infty \), it is concluded that \(\vert \frac{f_{u}(\cdot )}{u}-\lambda (\cdot ) \vert \rightarrow 0\). Thus we obtain
Consequently, by Theorem 13, the supposed sequential four-point q-CFBVP (3) admits a solution in X. The proof is ended. □
3.3 The third existence criterion
We now present our last existence criterion based on the O’Regan theorem [45].
Theorem 15
([45])
Consider a closed and convex set \(E \neq \emptyset \) belonging to a Banach space X containing an open set O. Define \(\mathcal{K}: \bar{O} \rightarrow E\) as \(\mathcal{K}=\mathcal{K}_{1}+\mathcal{K}_{2}\) subject to \(\mathcal{K}(\bar{O})\) being bounded. Moreover, \(\mathcal{K}_{1}: \bar{O} \rightarrow E\) is continuous and completely continuous, \(\mathcal{K}_{2}: \overline{O} \rightarrow E\) is nonlinear contraction (i.e, a nonnegative nondecreasing function \(\Upsilon :[0, \infty ) \rightarrow [0, \infty )\) exists which satisfies \(\Upsilon (t)< t\) for \(t>0\), and \(\Vert \mathcal{K}_{2} u-\mathcal{K}_{2} u' \Vert \leq \Upsilon ( \|u-u'\|)\), \(\forall u,u' \in O\).) Then either
-
(C1)
\(\mathcal{K}\) has a fixed point \(u \in \bar{O} \);
or
-
(C2)
there exist \(u \in \partial O\) and \(\mu \in (0,1)\) such that \(u=\mu \mathcal{K}(u)\).
Theorem 16
Let \(f, g\in C(J \times \mathbb{R}, \mathbb{R})\) and assume that:
-
(D1)
there exist a nonnegative mapping \(b \in C(J,[0, \infty ))\) and a nondecreasing function \(\mathbb{T}:[0, \infty ) \rightarrow (0, \infty )\) such that
$$ \bigl\vert f(t, u) \bigr\vert \leq b(t) \mathbb{T}\bigl( \Vert u \Vert \bigr), \quad \forall (t, u) \in J \times \mathbb{R}; $$ -
(D2)
there exist a continuous function \(\phi _{1}:[0, \infty ) \rightarrow [0, \infty )\) and \(\kappa >0\) such that
$$ \bigl\vert g(t, u)-g(t, v) \bigr\vert \leq \phi _{1} \bigl( \Vert u-v \Vert \bigr) \quad \textit{and} \quad \phi _{1} \bigl( \vert u \vert \bigr) \leq \kappa \vert u \vert , \quad \forall t \in J, u, v \in \mathbb{R}; $$ -
(D3)
there exists \(\varepsilon >0\) such that \(\sup_{\varepsilon \in (0, \infty )} [ \frac{\varepsilon }{\Theta _{1}b^{*} \mathbb{T}(\varepsilon )+l\Theta _{2}} ] >\frac{1}{1-\kappa \Theta _{2}}\), where \(l=\sup_{t \in J} |g(t, 0)| \) and \(\kappa \Theta _{2}<1\).
Then there exists a solution for the supposed sequential four-point q-CFBVP (3) on J.
Proof
We consider \(\mathcal{K}: X \rightarrow X\) defined by (13) as
where the operators \(\mathcal{K}_{1}\) and \(\mathcal{K}_{2}\) are, respectively, given in (14) and (15). By (D3), \(\exists \varepsilon >0\) so that
and take \(B_{\varepsilon }=\{u \in X:\|u\|<\varepsilon \}\). We demonstrate the continuity and complete continuity of \(\mathcal{K}_{1}\). Before this, we prove the uniform boundedness of \(\mathcal{K}_{1}\). Taking any \(u \in \bar{B}_{\varepsilon }\), we have
in which \(b^{*} = \sup_{t\in J}\vert b(t) \vert \). Thus \(\mathcal{K}_{1}\) is uniformly bounded. Let \(t_{1}, t_{2} \in J\) such that \(t_{1}< t_{2}\). Then
which tends to zero as \(t_{2} \rightarrow t_{1}\) free of u. This gives the equicontinuity of \(\mathcal{K}_{1}\). Application of the Arzelà–Ascoli theorem proves the compactness of \(\mathcal{K}_{1}\) and consequently its complete continuity. Furthermore, the continuity of \(\mathcal{K}_{1}\) can be deduced from that of f by the hypothesis.
We now show that \(\mathcal{K}_{2}\) is a nonlinear contraction. By (D2) and for \(u, v \in B_{\varepsilon }\), we have
By setting \(\Upsilon (u)= \Theta _{2} \kappa u\), note that \(\Upsilon (0)=0\) and \(\Upsilon (u)= \Theta _{2} \kappa u< u\) for \(u>0\) since \(\kappa \Theta _{2} < 1\). Thus
Hence \(\mathcal{K}_{2}\) is a nonlinear contraction. Now again, by (D2), for arbitrary \(u \in B_{\varepsilon }\), we estimate
where \(l=\sup_{t \in J}\vert g (t, 0)\vert \). Hence, we get
which confirms the boundedness of \(\mathcal{K}_{2}\). Thus, \(\mathcal{K} = \mathcal{K}_{1} + \mathcal{K}_{2}\) is bounded.
In the final step, we prove that the assumption \((\mathrm{C} 2)\) of Theorem 15 does not hold. To prove this, consider the existence of \(\mu \in (0,1)\) and \(u \in \partial B_{\varepsilon }\) such that \(u=\mu \mathcal{K} u\). So \(\|u\|=\varepsilon \) and
Taking the supremum for all \(t \in J\) yields
Hence, we get
which contradicts (D3). Thus \(\mathcal{K}_{1}\) and \(\mathcal{K}_{2}\) satisfy all the assertions of Theorem 15. Therefore, a fixed-point of \(\mathcal{K}\) in \(B_{\varepsilon }\) exists, which is the same solution of the sequential four-point q-CFBVP (3). The proof is finished. □
3.4 The uniqueness property
Finally, we investigate the uniqueness property for the solutions of the sequential four-point q-CFBVP (3) by referring to the Banach principle.
Theorem 17
Let
- \((H_{4})\):
-
\(\exists a > 0\) satisfying
$$\big|g_{u}(t) - g_{v}(t) \big| \leq a\big\vert u(t)-v(t)\big\vert ,\quad \forall t \in J, u, v \in \mathbb{R}; $$ - \((H_{5})\):
-
\(\exists \ell >0\) satisfying
$$\big|f_{u}(t) -f_{v}(t)\big| \leq \ell \big\vert u(t)-v(t)\big\vert , \quad \forall t \in J, u, v \in \mathbb{R}. $$
Then the sequential four-point q-CFBVP (3) has a unique solution on J if
where \(\Theta _{1}\), \(\Theta _{2}\) are given in (11) and (12), respectively.
Proof
To prove the relevant result, define the ball \(B_{r}=\{u \in X:\|u\| \leq r\}\) for some \(r>0\) satisfying
where \(g_{0}^{*}=\sup_{t \in J}|g(t, 0)|\) and \(f_{0}^{*}=\sup_{t \in J}|f(t, 0)|\) and \(\Theta _{1}\) and \(\Theta _{2}\) are, respectively, given by (11) and (12). Now, we prove \(\mathcal{K} B_{r} \subset B_{r}\) in which the operator \(\mathcal{K}: X\rightarrow X\) is illustrated as (13). Similar to Step 1 in Theorem 12, for \(u \in B_{r}\), we get
which implies \(\|\mathcal{K}(u)\| \leq r\). Thus, \(\mathcal{K}\) maps \(B_{r}\) into itself. Next, we prove that \(\mathcal{K}\) is a contraction. For \(u, v \in X\), and applying (11) and (12), we have
Consequently, we get
Since \(\ell \Theta _{1}+a\Theta _{2} <1\), the above inequality proves that \(\mathcal{K}\) is a contraction. Thus application of the Banach principle shows that \(\mathcal{K}\) has a unique fixed point, corresponding to unique solution of the sequential four-point q-CFBVP (3) on J. This ends the proof. □
4 The criterion of Ulam–Hyers stability
Due to the importance of the notion of stability for possible solutions of different dynamical systems, in this section, we review two Ulam–Hyers and generalized Ulam–Hyers stabilities for solutions of the sequential four-point q-CFBVP (3). For more information, see [46–48].
Definition 18
([49])
The sequential four-point q-CFBVP (3) is Ulam–Hyers stable if \(\exists c^{*} \in \mathbb{R}_{+} \) such that \(\forall \varepsilon >0\) and \(\forall u^{*}(t)\in C(J,\mathbb{R}) \) as a solution function satisfying
\(\exists u(t)\in C(J,\mathbb{R}) \) as the solution of the sequential four-point q-CFBVP (3) with
Definition 19
([49])
The sequential four-point q-CFBVP (3) is generalized Ulam–Hyers stable if \(\exists H \in C(\mathbb{R}^{+},\mathbb{R}^{+})\) with \(H(0)=0\) such that \(\forall \varepsilon >0\) and \(\forall u^{*}(t)\in C(J,\mathbb{R}) \) as a solution of
\(\exists u(t)\in C(J,\mathbb{R}) \) as a solution of the sequential four-point q-CFBVP (3) with
Remark 1
([49])
It is evident that Def. 18 ⇒ Def. 19.
Remark 2
([49])
It is notable that \(u^{*}(t)\in C(J,\mathbb{R}) \) is a solution for (21) iff \(\exists G\in C(J,\mathbb{R})\) depending on \(u^{*}\) such that
-
(1)
\(\vert G(t)\vert < \varepsilon \), \(t\in J\).
-
(2)
\({ \mathcal{D}}_{q}^{\alpha } ({ \mathcal{D}}_{q}^{\beta }u^{*}(t)-g(t, u^{*}(t)) ) = f(t, u^{*}(t)) + G(t)\), \(t\in J\).
Now, we can discuss the above stabilities for solutions to the sequential four-point q-CFBVP (3).
Theorem 20
If \((H_{4})\) and \((H_{5})\) are fulfilled, then the sequential four-point q-CFBVP (3) is Ulam–Hyers stable on J and accordingly is generalized Ulam–Hyers stable whenever
where \(\Theta _{1}\), \(\Theta _{2}\) are in the same forms given in (11) and (12), respectively.
Proof
For each \(\varepsilon >0 \) and each function \(u^{*}(t)\in C(J,\mathbb{R}) \) as a solution of the inequality
a function \(G(t) \) exists which satisfies
with \(\vert G(t) \vert \leq \varepsilon \). It gives
On the other side, let a unique function \(u(t)\in C(J,\mathbb{R}) \) be the solution of (3). Then \(u(t) \) is written by
We estimate
Hence
where \(\Theta _{1}\), \(\Theta _{2}\) are the same constants as represented in (11) and (12), respectively. In consequence,
By assuming \(c^{*}= \frac{ T^{\alpha + \beta }}{\Gamma _{q}(\alpha + \beta + 1) [1 - (\ell \Theta _{1}+a\Theta _{2}) ] } \), the Ulam–Hyers stability for q-system (3) is satisfied. Also, for
with \(H(0)=0 \), the condition of the generalized Ulam–Hyers stability is fulfilled for solutions of the q-system (3). This completes the proof. □
5 Two examples
Here, we aim to present some examples to examine the obtained results.
Example 1
Let us consider the sequential four-point q-CFBVP with the following data:
where \(\alpha =1 / 3\), \(\beta =2 / 3\), \(q=1/4\), \(T=1\), \(\gamma =1 / 2\), \(a_{1}=b_{2}=1\), \(a_{2}=b_{1}=2\), \(\sigma _{1}=3 / 4\), \(\sigma _{2}=1/4\), \(\lambda _{1}=2/5\), \(\lambda _{2}=3/7\), \(\eta _{1}=1 / 2\), \(\eta _{2}=3/4\) and \(g(t, u)\), \(f(t, u)\) are defined by
The continuity of f is obvious and we reach \(f(t, 0)=\frac{1}{2} \) (see Fig. 1). Now, we divide \(f(t, u)\) by u and we get
Hence
Setting \(\lambda (t)=\frac{t}{56(1+t)^{5}}\), we get \(\lambda _{\max }=0.0179\). On the other side,
Letting \(A=1/6\), we obtain \(\Theta _{1}=3.5597\) and \(\Theta _{2}=4.8600\). since \((1-A\Theta _{2} ) / \Theta _{1}=0.0548>\lambda _{\max }\), where \(\Theta _{1}\) and \(\Theta _{2}\) are, respectively, given by Eqs. (11) and (12). therefore, by Theorem 14, the sequential four-point q-CFBVP (22) has a solution on \([0, 1]\).
Example 2
By considering \(\alpha =1 / 3\), \(\beta =2 / 3\), \(q=1/4\), \(T=1\), \(\gamma =1 / 2\), \(a_{1}=b_{2}=1\), \(a_{2}=b_{1}=2\), \(\sigma _{1}=3 / 4\), \(\sigma _{2}=1/4\), \(\lambda _{1}=2/5\), \(\lambda _{2}=3/7\), \(\eta _{1}=1 / 2\), \(\eta _{2}=3/4\) the sequential four-point q-CFBVP is then given by
where \(f(t, u)\) and \(g(t, u)\) are given by (see Fig. 2)
By usual computations, we obtain \(\Theta _{1}=3.5597\) and \(\Theta _{2}=4.8600\). Taking \(a =1/100\) and \(\ell =1/90\), it is clear that \((H_{4} )\) and \((H_{5} )\) are verified. Moreover, \(\ell \Theta _{1}+ a \Theta _{2} \approx 0.8775<1\). Thus, Theorem 17 is fulfilled and hence based on it, one can find that a unique solution exists for the sequential four-point q-CFBVP (23) on \([0,1]\). On the other side, as \(\ell \Theta _{1} + a\Theta _{2} <1\) is valid, so, by Theorem 20, the given sequential four-point q-CFBVP (23) is Ulam–Hyers and also generalized Ulam–Hyers stable on J.
6 Conclusions
In the present research, we considered a new boundary problem in the context of the quantum fractional operators. In other words, we defined a sequential q-fractional system of q-difference equation in which boundary conditions are designed as a linear combination of an unknown function and its q-derivative corresponding to a multiple of q-integrals in four points. The main focus of this research is on the solution’s existence and its uniqueness with the help of some methods inspired by several pure concepts in functional analysis. We used three different fixed-point methods for this aim relying on the measure of non-compactness and condensing operators and compact operators. The existence of a unique solution is investigated based on the Banach criterion. The investigation of stability of the given q-CFBVP system in two formats based on Ulam–Hyers’ conditions is implemented. Lastly, two examples are provided to ensure the findings. It is evident that this structure is more general and has many special applied cases. By assuming \(g(t, u(t)) = - \mu \in \mathbb{R}\) and \(a_{1} = b_{1} = a_{2} = b_{2} = 1\) and \(\sigma _{1} = \sigma _{2} = 1\) and by letting \(q \to 1\), our proposed sequential four-point q-CFBVP (3) is transformed into a fractional Langevin equation with integral conditions
which is considered as one of the most important equations in mathematical physics. Therefore, one can observe that the research study presented in the manuscript is not only new in the existing structure, but will also lead to other various quantum fractional problems as special cases. In future studies, we can generalize our boundary conditions to multi-point ones and investigate similar results in the context of newly-defined fractional \((p,q)\)-operators in both cases of difference equations and inclusions.
Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Baleanu, D., Etemad, S., Mohammadi, H., Rezapour, S.: A novel modeling of boundary value problems on the glucose graph. Commun. Nonlinear Sci. Numer. Simul. 100, 105844 (2021). https://doi.org/10.1016/j.cnsns.2021.105844
Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 45(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70
Boutiara, A., Guerbati, K., Benbachir, M.: Caputo–Hadamard fractional differential equation with three-point boundary conditions in Banach spaces. AIMS Math. 5(1), 259–272 (2019). https://doi.org/10.3934/math.2020017
Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020). https://doi.org/10.1016/j.chaos.2020.109705
Boutiara, A., Guerbati, K., Benbachir, M.: Caputo type fractional differential equation with nonlocal Erdelyi–Kober type integral boundary conditions in Banach spaces. Surv. Math. Appl. 15, 399–418 (2020)
Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo-Fabrizio derivative. Bound. Value Probl. 2018, 90 (2018). https://doi.org/10.1186/s13661-018-1008-9
Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021). https://doi.org/10.1016/j.chaos.2021.110668
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021)
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty type hybrid contraction. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 2021, 155 (2021). https://doi.org/10.1007/s13398-021-01095-3
Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0
Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0
Abdeljawad, T., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11(5), 686 (2019). https://doi.org/10.3390/sym11050686
Abdo, M.S., Abdeljawad, T., Shah, K., Ali, S.M.: On nonlinear coupled evolution system with nonlocal subsidiary conditions under fractal-fractional order derivative. Math. Methods Appl. Sci. 44(8), 6581–6600 (2021). https://doi.org/10.1002/mma.7210
Gul, R., Sarwar, M., Shah, K., Abdeljawad, T., Jarad, F.: Qualitative analysis of implicit Dirichlet boundary value problem for Caputo–Fabrizio fractional differential equations. J. Funct. Spaces 2020, Article ID 4714032 (2020). https://doi.org/10.1155/2020/4714032
Ferreira, R.A.C.: Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 61(2), 367–373 (2011). https://doi.org/10.1016/j.camwa.2010.11.012
Ernst, T.: A Comprehensive Treatment of q-Calculus. Birkhäuser, Basel (2012)
Jackson, F.H.: q-difference equations. Comput. Math. Appl. 32(4), 305–314 (1910). https://doi.org/10.2307/2370183
Adams, C.R.: On the linear ordinary q-difference equation. Ann. Math. 30(1), 195–205 (1910). https://doi.org/10.2307/1968274
Carmichael, R.D.: The general theory of linear q-difference equations. Am. J. Math. 34(2), 147–168 (1912). https://doi.org/10.2307/2369887
Atici, F.M., Eloe, P.W.: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14(3), 341–352 (2007). https://doi.org/10.2991/jnmp.2007.14.3.4
Annaby, M.H., Mansour, Z.S.: q-Fractional Calculus and Equations. Springer, Berlin (2012)
Jarad, F., Abdeljawad, T., Baleanu, D.: Stability of q-fractional non-autonomous systems. Nonlinear Anal., Real World Appl. 14(1), 780–784 (2013). https://doi.org/10.1016/j.nonrwa.2012.08.001
Abdeljawad, T., Alzabut, J.: The q-fractional analogue for Gronwall-type inequality. J. Funct. Spaces 2013, Article ID 543839 (2013). https://doi.org/10.1155/2013/543839
Butt, R.I., Abdeljawad, T., Alqudah, M.A., Ur Rehman, M.: Ulam stability of Caputo q-fractional delay difference equation: q-fractional Gronwall inequality approach. J. Inequal. Appl. 2019, 305 (2019). https://doi.org/10.1186/s13660-019-2257-6
Ahmad, B., Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 59(107)(2), 119–134 (2016)
Abdeljawad, T., Baleanu, D.: Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 16(12), 4682–4688 (2011). https://doi.org/10.1016/j.cnsns.2011.01.026
Etemad, S., Ntouyas, S.K., Ahmad, B.: Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders. Mathematics 7(8), 659 (2016). https://doi.org/10.3390/math7080659
Asawasamrit, S., Tariboon, J., Ntouyas, S.K.: Existence of solutions for fractional q-integro-difference equations with nonlocal fractional q-integral conditions. Abstr. Appl. Anal. 2014, Article ID 474138 (2014). https://doi.org/10.1155/2014/474138
Etemad, S., Rezapour, S., Samei, M.E.: α-ψ-contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational results. Adv. Differ. Equ. 2020, 218 (2020). https://doi.org/10.1186/s13662-020-02679-w
Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for nonlinear fractional q-difference equations with q-integral boundary conditions. J. Adv. Math. Stud. 8(2), 265–285 (2015)
Rezapour, S., Imran, A., Hussain, A., Martínez, F., Etemad, S., Kaabar, M.K.A.: Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 13(3), 469 (2021). https://doi.org/10.3390/sym13030469
Ahmad, B., Nieto, J.J., Alsaedi, A., Al-Hutami, H.: Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditions. Filomat 28(8), 1719–1736 (2014). https://doi.org/10.2298/FIL1408719A
Ahmad, B., Nieto, J.J., Alsaedi, A., Al-Hutami, H.: Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions. J. Franklin Inst. 351(5), 2890–2909 (2014). https://doi.org/10.1016/j.jfranklin.2014.01.020
Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: On q-analogues of Caputo derivative and Mittag-Lefler function. Fract. Calc. Appl. Anal. 10(4), 359–373 (2007)
Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Math. Proc. Camb. Philos. Soc. 66(2), 365–370 (1969). https://doi.org/10.1017/S0305004100045060
Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007). https://doi.org/10.2298/AADM0701311R
Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
Zeidler, E.: Nonlinear Functional Analysis and Its Application: Fixed Point Theorems. Springer, New York (1986)
Sadovskii, B.N.: A fixed point principle. Funct. Anal. Appl. 1, 151–153 (1967). https://doi.org/10.1007/BF01076087
Krasnoselskii, M.A., Zabreiko, P.P.: Geometrical Methods of Nonlinear Analysis. Springer, New York (1984)
O’Regan, D.: Fixed-point theory for the sum of two operators. Appl. Math. Lett. 9(1), 1–8 (1996). https://doi.org/10.1016/0893-9659(95)00093-3
Ameen, R., Jarad, F., Abdeljawad, T.: Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditions. Filomat 32(15), 5265–5274 (2018). https://doi.org/10.2298/FIL1815265A
Ahmad, I., Nieto, J.J., Ur Rahman, G., Shah, K.: Fractional boundary value problems with multiply orders of fractional derivatives and integrals. Electron. J. Differ. Equ. 2020(132), 1 (2020)
Boutiara, A., Etemad, S., Hussain, A., Rezapour, S.: The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving ϕ-Caputo fractional operators. Adv. Differ. Equ. 2021, 95 (2021). https://doi.org/10.1186/s13662-021-03253-8
Rus, I.A.: Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 26(1), 103–107 (2010)
Acknowledgements
The second and sixth authors were supported by Azarbaijan Shahid Madani University. The authors express their gratitude to the dear unknown referees for their helpful suggestions, which improved the final version of this paper.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Boutiara, A., Etemad, S., Alzabut, J. et al. On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria. Adv Differ Equ 2021, 367 (2021). https://doi.org/10.1186/s13662-021-03525-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-021-03525-3