Skip to main content

Theory and Modern Applications

New general integral transform via Atangana–Baleanu derivatives


The current paper is about the investigation of a new integral transform introduced recently by Jafari. Specifically, we explore the applicability of this integral transform on Atangana–Baleanu derivative and the associated fractional integral. It is shown that by applying specific conditions on this integral transform, other integral transforms are deduced. We provide examples to reinforce the applicability of this new integral transform.

1 Introduction

Fractional calculus is regarded as an extension of integer calculus in the sense that it permits the order of the derivative or integral to be a fraction. The idea of having a fractional order derivative did not make practical sense in the real world, thus the subject of fractional calculus was mainly reserved for mathematicians for a long time since its discovery [13].

However, researchers have come to realise that models constructed from fractional calculus can successfully represent real world problems and sometimes yield better results compared to models from the integer calculus. Some useful results from fractional calculus models appear in engineering, physics, biology and economics [114].

The definition of the fractional derivative is in itself a developing concept. Numerous definitions have been suggested for the fractional derivative, with almost each definition possessing some form of deficiency. It is generally believed that the choice of the derivative used is dictated by the situation that is being modelled.

Since it was discovered that the fractional derivative can be successfully applied to practical problems, it is the Caputo derivative that has been used the most. The only shortcoming of the Caputo derivative is the singularity issue. Other fractional derivatives that have this singularity problem are Riemann–Liouville, Caputo–Hadamard, and Riesz (see [13, 15, 16]). In a bid to address the singularity concern, the Caputo–Fabrizio derivative was proposed [17, 18], this derivative eliminated the singularity problem through the use of an exponential kernel. Atangana and Baleanu replaced the exponential kernel by the Mittag-Leffler function to create another non-singular kernel derivative called the Atangana–Baleanu derivative. More detailed discussions encompassing both theory and applications of the non-singular derivatives are found in [1924]. In [5, 2528], the authors discuss the uniqueness and existence of fractional differential equations.

To fully harness the capability of fractional differential equations in modelling problems that arise in the real world, it is imperative that we have methods of solutions that are computationally inexpensive, easily accessible and highly accurate. Integral transforms are some of the techniques that have proven their worth, as they are regarded to be easy to implement and demand reasonable labour in terms of computations.

Integral transforms offer an alternative to integration in the solution of differential equations. The integral transform maps the domain of the original problem into a different domain consisting of an algebraic equation that is normally easy to manipulate. Taking the inverse of the new domain results in the solution of the original problem [29].

There are different types of integral transforms that are used in the solution of differential equations, but it is the Laplace transform that is mostly applied. Most of the integral transforms that have been suggested are extensions of the Laplace transform. Some of the integral transforms that are closely related to the Laplace transform are the Elzaki transform, Sumudu transform, Shehu transform, etc. [3034].

Recently, a more generalized integral transform has been introduced by the second author [35]. Imposing specific conditions on this integral transform yields other integral transforms, for example, the Laplace transform, natural transform, Elzaki transform and Sawi transform [35]. To get a deeper insight into the properties and applications of this new general integral transform, we refer the reader to [35].

Our main intention in this research is to investigate the application of this new generalized integral transform in the solution of differential equations involving the Atangana–Baleanu derivative.

We structure the rest of our work in the following manner. In the next section, we provide some important mathematical concepts that will form the basis for our research. We then follow by presenting the main results of the research in section three. To reinforce the theoretical aspects of our work, we provide applications in the fourth section. A concise summary of our research findings is provided in the last section.

2 Preliminaries

Throughout, set

$$ A= \bigl\{ f(t):\exists M>0, k>0, \bigl\vert f(t) \bigr\vert \leq Me^{kt}, \text{ if } t\geq 0 \bigr\} , $$

and suppose that \(f(t)\) is an integrable function defined on the set A.

Definition 1


Consider the functions \(\varphi (s),\psi (s):\mathbb{R} ^{+}\longrightarrow \mathbb{R} ^{+}\) such that \(\varphi (s)\neq 0\) for all \(s\in \mathbb{R} ^{+}\). The new general integral transform of the function \(f(t)\) denoted by \(\mathcal{F}_{\mathrm{J}}(s)\) is defined by

$$ T \bigl\{ f(t),s \bigr\} =\mathcal{F}_{\mathrm{J}}(s)=\varphi (s) { \int _{0}^{\infty }} f(t)e^{-\psi (s)t}\,dt, $$

with the corresponding inverse,

$$ \mathcal{F}_{\mathrm{J}}^{-1}(s)=T^{-1} \biggl\{ \varphi (s) { \int _{0}^{\infty }} f(t)e^{-\psi (s)t}\,dt \biggr\} =f(t). $$

The integral transform (1) exists for all \(\psi (s)>k\). It is simple to check that the new general integral transform is a linear operator and has many properties that are similar to other integral transforms, more detailed discussion on this can be found in [35].

Theorem 1

The integral transform \(\mathcal{F}_{\mathrm{J}}(s)\) of the derivative of \(f(t)\) is given as [35],

$$ T \bigl\{ f^{(n)}(t),s \bigr\} =\psi ^{n}(s) \mathcal{F}_{\mathrm{J}}(s)- \varphi (s){ \sum_{k=0}^{n-1}} \psi ^{n-1-k}(s)f^{(k)}(0), \quad \varphi (s), \psi (s)>0\ \forall n\in \mathbb{N}. $$

Theorem 2

If \(\mathcal{F}_{\mathrm{J}}(s)\) and \(\mathcal{H}_{\mathrm{J}}(s)\) are general integral transforms of \(f(t)\) and \(h(t)\), respectively, then

$$ T \{ f\ast h \} =\frac{1}{\varphi (s)}\mathcal{F}_{ \mathrm{J}}(s)\cdot \mathcal{H}_{\mathrm{J}}(s). $$


$$ T^{-1} \{ f\cdot h \} =\varphi (s)T^{-1} \{ f \} \ast T^{-1} \{ h \} . $$


We have

$$ f\ast h={ \int _{0}^{\infty }} f(\tau )h(t-\tau )\,d \tau . $$

Using the new general transform and the Leibniz theorem, we obtain

$$\begin{aligned} T \{ f\ast h \} & =T \biggl\{ { \int _{0}^{ \infty }} f(\tau )h(t-\tau )\,d\tau \biggr\} = \varphi (s) { \int _{0}^{\infty }} \biggl[ { \int _{0}^{\infty }} f(\tau )h(t-\tau )\,d\tau \biggr] e^{- \psi (s)t}\,dt \\ & =\varphi (s) { \int _{0}^{\infty }} f(\tau ) \biggl[ { \int _{0}^{\infty }} h(t-\tau )e^{- \psi (s)t}\,dt \biggr] \,d\tau , \end{aligned}$$

by setting \(u=t-\tau \), we get

$$\begin{aligned} T \{ f\ast h \} & =\varphi (s) { \int _{0}^{\infty }} f(\tau )e^{-\psi (s)\tau } \biggl[ { \int _{0}^{\infty }} h(u)e^{-\psi (s)u}\,dt \biggr] \,d \tau \\ & =\varphi (s) { \int _{0}^{\infty }} f(\tau )e^{- \psi (s)\tau }\,d\tau \times \frac{1}{\varphi (s)}\mathcal{H}_{ \mathrm{J}}(s) \\ & =\frac{1}{\varphi (s)}\mathcal{F}_{\mathrm{J}}(s)\cdot \mathcal{H}_{\mathrm{J}}(s). \end{aligned}$$

Furthermore, the convolution of the inverse transform is

$$ T \bigl\{ T^{-1} \{ f \} \ast T^{-1} \{ h \} \bigr\} = \frac{1}{\varphi (s)}f\cdot h. $$


$$ T^{-1} \{ f\cdot h \} =\varphi (s)T^{-1} \{ f \} \ast T^{-1} \{ h \} . $$


Table 1 shows the general integral transforms of some basic functions.

Table 1 Integral transform of some basic functions

The two parameter Mittag-Leffler function is stated as [3]

$$ E_{\eta ,\sigma }(t)=\sum_{k=0}^{\infty } \frac{z^{k}}{\Gamma (\eta k+\sigma )},\quad z\in \mathbb{C}, \operatorname{Re}(\eta )>0 \text{ and } \operatorname{Re}(\sigma )>0. $$

A variant of the Mittag-Leffler function is given by Prabhakar as [36]

$$ E_{\eta ,\sigma }^{\gamma }(z)=\sum_{k=0}^{\infty } \frac{\gamma _{k}}{\Gamma (\eta k+\sigma )}\frac{z^{k}}{k!}, \quad z\in \mathbb{C} , \operatorname{Re}(\eta )>0, \operatorname{Re}(\sigma )>0 \text{ and }\operatorname{Re}(\gamma )>0, $$

\(\gamma _{k}\) is the Pochhammer symbol.

Definition 2

([19, 22])

The Atangana–Baleanu fractional derivative is defined by

$$ {}_{a}^{ABC}D_{t}^{\eta }\bigl(f(t)\bigr)= \frac{\mathcal{K}(\eta )}{1-\eta } \int _{a}^{t}f^{{\prime }}(x)E_{\eta } \biggl( \frac{\eta }{\eta -1}(t-x)^{\eta } \biggr) \,dx, $$

another version of the Atangana–Baleanu derivative is stated as

$$ {}_{a}^{ABR}D_{t}^{\eta }\bigl(f(t)\bigr)= \frac{\mathcal{K}(\eta )}{1-\eta } \frac{d}{dt} \int _{a}^{t}f(x)E_{\eta } \biggl( \frac{\eta }{\eta -1}(t-x)^{ \eta } \biggr) \,dx, $$

where \(\eta \in (0,1)\) and \(\mathcal{K}(\eta )\) represents the normalization function with the property \(\mathcal{K}(0)=\mathcal{K}(1)=1\).

Definition 3

([19, 22])

The fractional integral associate to the fractional derivative of Atangana–Baleanu is defined by

$$ {}_{a}^{AB}I_{t}^{\eta }\bigl(f(t)\bigr)= \frac{1-\eta }{\mathcal{K}(\eta )}f(t)+ \frac{\eta }{\mathcal{K}(\eta )\Gamma (\eta )} \int _{a}^{t}f(x) (t-x)^{ \eta -1}\,dx. $$

When \(\eta =0\) we recover the initial function, and if \(\eta =1\), we obtain the ordinary integral.

3 New general transform for Atangana–Baleanu fractional derivatives

We present the main results of our research in this section.

Lemma 1

Let \(0<\eta <1\) and \(\lambda \in \mathbb{R} \) such that \(\psi (s)< \vert \lambda \vert ^{\frac{1}{\eta }}\), then

$$ T \bigl\{ t^{\sigma -1}E_{\eta ,\sigma }^{\gamma } \bigl( \lambda t^{ \eta } \bigr) ,s \bigr\} =\frac{\varphi (s)}{\psi (s)^{\sigma }} \frac{1}{ ( 1-\frac{\lambda }{\psi (s)^{\eta }} ) ^{\gamma }},\quad \psi (s)>0. $$


The new general integral transform of the function \(t^{\sigma -1}E_{\eta ,\sigma }^{\gamma } ( \lambda t^{\eta } ) \) yields

$$\begin{aligned} T \bigl\{ t^{\sigma -1}E_{\eta ,\sigma }^{\gamma } \bigl( \lambda t^{ \eta } \bigr) ,s \bigr\} & =\varphi (s){ \int _{0}^{\infty }} t^{\sigma -1}E_{\eta , \sigma }^{\gamma } \bigl( \lambda t^{\eta } \bigr) e^{-\psi (s)t}\,dt \\ & =\varphi (s){ \int _{0}^{\infty }} t^{\sigma -1}\sum _{k=0}^{ \infty }\frac{\gamma _{k}}{\Gamma (\eta k+\sigma )}\frac{ ( \lambda t^{\eta } ) ^{k}}{k!}e^{-\psi (s)t}\,dt \\ & =\sum_{k=0}^{\infty }\frac{\gamma _{k}}{\Gamma (\eta k+\sigma )} \frac{\lambda ^{k}}{k!}\varphi (s){ \int _{0}^{\infty }} t^{\eta k+\sigma -1}e^{- \psi (s)t}\,dt \\ & =\sum_{k=0}^{\infty }\frac{\gamma _{k}}{\Gamma (\eta k+\sigma )} \frac{\lambda ^{k}}{k!}T \bigl\{ t^{\eta k+\sigma -1} \bigr\} , \end{aligned}$$


$$\begin{aligned} T \bigl\{ t^{\sigma -1}E_{\eta ,\sigma }^{\gamma } \bigl( \lambda t^{ \eta } \bigr) ,s \bigr\} & =\sum_{k=0}^{\infty } \frac{\gamma _{k}}{\Gamma (\eta k+\sigma )}\frac{\lambda ^{k}}{k!}T \bigl\{ t^{\eta k+\sigma -1} \bigr\} \\ & =\sum_{k=0}^{\infty }\frac{\gamma _{k}}{\Gamma (\eta k+\sigma )} \frac{\lambda ^{k}}{k!} \frac{\Gamma (\eta k+\sigma )\varphi (s)}{\psi (s)^{\eta k+\sigma }} \\ & =\frac{\varphi (s)}{\psi (s)^{\sigma }}\sum_{k=0}^{\infty } \frac{\gamma _{k}}{k!} \biggl( \frac{\lambda }{\psi (s)^{\eta }} \biggr) ^{k}, \end{aligned}$$

since \(q(s)< \vert \lambda \vert ^{\frac{1}{\eta }}\), it follows that

$$ T \bigl\{ t^{\sigma -1}E_{\eta ,\sigma }^{\gamma } \bigl( \lambda t^{ \eta } \bigr) ,s \bigr\} =\frac{\varphi (s)}{\psi (s)^{\sigma }} \frac{1}{ ( 1-\frac{\lambda }{\psi (s)^{\eta }} ) ^{\gamma }}. $$


Corollary 1

Under the same conditions of Lemma (1), we have the new general transform of the function \(E_{\eta } ( \lambda t^{\eta } ) \) as

$$ T \bigl\{ E_{\eta } \bigl( \lambda t^{\eta } \bigr) \bigr\} = \frac{\varphi (s)}{\psi (s)} \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }-\lambda },$$

and the new general transform of the function \(t^{\sigma -1}E_{\eta } ( \lambda t^{\eta } ) \) as

$$ T \bigl\{ t^{\sigma -1}E_{\eta } \bigl( \lambda t^{\eta } \bigr) \bigr\} = \frac{\varphi (s)\psi (s)^{\eta -\sigma }}{\psi (s)^{\eta }-\lambda }. $$


We have

$$ T \bigl\{ E_{\eta } \bigl( \lambda t^{\eta } \bigr) \bigr\} =T \bigl\{ E_{\eta ,1}^{1} \bigl( \lambda t^{\eta } \bigr) ,s \bigr\} = \frac{\varphi (s)}{\psi (s)} \frac{1}{1-\frac{\lambda }{\psi (s)^{\eta }}}$$


$$ T \bigl\{ t^{\sigma -1}E_{\eta } \bigl( \lambda t^{\eta } \bigr) \bigr\} =T \bigl\{ t^{\sigma -1}E_{\eta ,\sigma }^{1} \bigl( \lambda t^{\eta } \bigr) ,s \bigr\} = \frac{\varphi (s)\psi (s)^{\eta -\sigma }}{\psi (s)^{\eta }-\lambda } . $$


Remark 1

Lemma (1) generalizes the results obtained in [37] for the Sumudu transform and in [38] for the Shehu transform of the function \(t^{\sigma -1}E_{\eta ,\sigma }^{\gamma } ( \lambda t^{\eta } ) \). Indeed, when \(\varphi (s)=\frac{1}{s}\) and \(\psi (s)=\frac{1}{s}\) the Sumudu transform is

$$ S \bigl\{ t^{\sigma -1}E_{\eta ,\sigma }^{\gamma } \bigl( \lambda t^{ \eta } \bigr) \bigr\} =\frac{\frac{1}{s}}{(\frac{1}{s})^{\sigma }} \frac{1}{ ( 1-\frac{\lambda }{(\frac{1}{s})^{\eta }} ) ^{\gamma }}=s^{\sigma -1} \bigl( 1-\lambda s^{\eta } \bigr) ^{-\gamma }, $$

for \(\varphi (s)=1\) and \(\psi (s)=\frac{s}{u}\), we obtain the Shehu transform,

$$ SH \bigl\{ t^{\sigma -1}E_{\eta ,\sigma }^{\gamma } \bigl( \lambda t^{ \eta } \bigr) \bigr\} =\frac{1}{(\frac{s}{u})^{\sigma }} \frac{1}{ ( 1-\frac{\lambda }{(\frac{s}{u})^{\eta }} ) ^{\gamma }}=\biggl( \frac{u}{s}\biggr)^{\sigma } \biggl( 1-\lambda \biggl( \frac{u}{s}\biggr)^{\eta } \biggr) ^{-\gamma } . $$

Obviously, when \(\gamma =1\), we get the Sumudu and Shehu transform of the function \(t^{\sigma -1}E_{\eta ,\sigma } ( \lambda t^{\eta } ) \).

Henceforth, we suppose that the function \(f(t)\in A\cap H^{1}(a,b)\) such that \(H^{1}(a,b)\) is a Sobolev space of order one defined by

$$ H^{1}(a,b)=\bigl\{ f\in L^{2}(a,b):f^{{\prime }}\in L^{2}(a,b)\bigr\} . $$

Theorem 3

The new general integral transform of the Atangana–Baleanu derivative stated in (3) is given as

$$ T \bigl\{ {}_{0}^{ABC}D_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} = \frac{\mathcal{K}(\eta )}{1-\eta } \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{1-\eta }} \biggl[ \mathcal{F}_{\mathrm{J}}(s)-\frac{\varphi (s)}{\psi (s)}f(0) \biggr] . $$


Let \(\mathcal{F}_{\mathrm{J}}(s)\) be the new general transform of the function \(f(t)\). Let us observe that in definition (3) we have a convolution integral,

$$ \int _{0}^{t}f^{{\prime }}(x)E_{\eta } \biggl( \frac{\eta }{\eta -1}(t-x)^{ \eta } \biggr) \,dx=f^{{\prime }}(t) \ast E_{\eta } \biggl( \frac{\eta }{\eta -1}t^{\eta } \biggr) $$

then one has

$$\begin{aligned} T \bigl\{ {}_{0}^{ABC}D_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} & =T \biggl\{ \frac{\mathcal{K}(\eta )}{1-\eta } \int _{0}^{t}f^{{\prime }}(x)E_{\eta } \biggl( \frac{\eta }{\eta -1}(t-x)^{\eta } \biggr) \,dx \biggr\} \\ & =\frac{\mathcal{K}(\eta )}{1-\eta }T \biggl\{ f^{{\prime }}(t)\ast E_{ \eta } \biggl( \frac{\eta }{\eta -1}t^{\eta } \biggr) \biggr\} \\ & =\frac{\mathcal{K}(\eta )}{1-\eta }\frac{1}{\varphi (s)}T \bigl\{ f^{{ \prime }}(t) \bigr\} \cdot T \biggl\{ E_{\eta } \biggl( \frac{\eta }{\eta -1}t^{ \eta } \biggr) \biggr\} . \end{aligned}$$

Using Theorem 1 and applying the result obtained in Corollary 1, then

$$\begin{aligned} T \bigl\{ {}_{0}^{ABC}D_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} & = \frac{\mathcal{K}(\eta )}{1-\eta }\frac{1}{\varphi (s)} \bigl[ \psi (s) \mathcal{F}_{\mathrm{J}}(s)-\varphi (s)f(0) \bigr] \frac{\varphi (s)}{\psi (s)} \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{1-\eta }} \\ & =\frac{\mathcal{K}(\eta )}{1-\eta } \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{1-\eta }} \biggl[ \mathcal{F}_{\mathrm{J}}(s)- \frac{\varphi (s)}{\psi (s)}f(0) \biggr] . \end{aligned}$$


Corollary 2

  • If \(\varphi (s)=1\) and \(\psi (s)=s\), then this new transform gives the Laplace transform, see [19, 20],

    $$\begin{aligned} L \bigl\{ {}_{0}^{ABC}D_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} & = \frac{\mathcal{K}(\eta )}{1-\eta }\times \frac{s^{\eta }}{s^{\eta }+\frac{\eta }{1-\eta }} \biggl[ \mathcal{F}_{\mathrm{J}}(s)-\frac{1}{s}f(0) \biggr] \\ & =\frac{\mathcal{K}(\eta )}{1-\eta } \frac{s^{\eta }\mathcal{F}_{\mathrm{J}}(s)-s^{\eta -1}f(0)}{s^{\eta }+\frac{\eta }{1-\eta }}. \end{aligned}$$
  • If \(\varphi (s)=s\) and \(\psi (s)=\frac{1}{s}\), we have the Elzaki transform [39],

    $$\begin{aligned} E \bigl\{ {}_{0}^{ABR}D_{t}^{\eta } \bigl(u(t)\bigr) \bigr\} & = \frac{\mathcal{K}(\eta )}{1-\eta } \frac{(\frac{1}{s})^{\eta }}{(\frac{1}{s})^{\eta }+\frac{\eta }{1-\eta }} \biggl[ \mathcal{F}_{\mathrm{J}}(s)- \frac{s}{\frac{1}{s}}f(0) \biggr] \\ & =\frac{\mathcal{K}(\eta )}{1-\eta } \frac{1}{1+\frac{\eta }{1-\eta }s^{\eta }} \bigl[ \mathcal{F}_{ \mathrm{J}}(s)-s^{2}f(0) \bigr]. \end{aligned}$$
  • If \(\varphi (s)=\psi (s)=\frac{1}{s}\), the new transform coincides with the Sumudu transform [40],

    $$\begin{aligned} S \bigl\{ {}_{0}^{ABC}D_{t}^{\eta } \bigl(u(t)\bigr) \bigr\} & = \frac{\mathcal{K}(\eta )}{1-\eta } \frac{\frac{1}{s^{\eta }}}{\frac{1}{s^{\eta }}+\frac{\eta }{1-\eta }} \bigl[ \mathcal{F}_{\mathrm{J}}(s)-f(0) \bigr] \\ & =\frac{\mathcal{K}(\eta )}{1-\eta } \frac{1}{1+\frac{\eta }{1-\eta }s^{\eta }} \bigl[ \mathcal{F}_{ \mathrm{J}}(s)-f(0) \bigr]. \end{aligned}$$
  • If \(\varphi (s)=1\) and \(\psi (s)=\frac{s}{u}\), then the Shehu transform of the Atangana–Baleanu fractional derivative in Caputo sense [40] is obtained,

    $$\begin{aligned} SH \bigl\{ {}_{0}^{ABC}D_{t}^{\eta } \bigl(u(t)\bigr) \bigr\} & = \frac{\mathcal{K}(\eta )}{1-\eta } \frac{(\frac{s}{u})^{\eta }}{(\frac{s}{u})^{\eta }+\frac{\eta }{1-\eta }} \biggl[ \mathcal{F}_{\mathrm{J}}(s)- \frac{1}{\frac{s}{u}}f(0) \biggr] \\ & =\frac{\mathcal{K}(\eta )}{1-\eta } \frac{(\frac{s}{u})^{\eta }\mathcal{F}_{\mathrm{J}}(s)-(\frac{s}{u})^{\eta -1}f(0)}{(\frac{s}{u})^{\eta }+\frac{\eta }{1-\eta }}. \end{aligned}$$

Theorem 4

The new general integral transform of the Atangana–Baleanu derivative stated in (4) is given as

$$ T \bigl\{ {}_{0}^{ABR}D_{t}^{\eta } \bigl(u(t)\bigr) \bigr\} = \frac{\mathcal{K}(\eta )}{1-\eta } \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{1-\eta }}\mathcal{F}_{\mathrm{J}}(s). $$


Let \(\mathcal{F}_{\mathrm{J}}(s)\) be the generalized transform of the function \(f(t)\). We have

$$\begin{aligned} T \bigl\{ {}_{0}^{ABR}D_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} & =T \biggl\{ \frac{\mathcal{K}(\eta )}{1-\eta }\frac{d}{dt} \int _{a}^{t}f(x)E_{\eta } \biggl( \frac{\eta }{\eta -1}(t-x)^{\eta } \biggr) \,dx \biggr\} \\ & =\frac{\mathcal{K}(\eta )}{1-\eta }T \biggl\{ \frac{d}{dt} \biggl[ f(t) \ast E_{\eta } \biggl( \frac{\eta }{\eta -1}t^{\eta } \biggr) \biggr] \biggr\} \\ & =\frac{\mathcal{K}(\eta )}{1-\eta } \biggl[ \psi (s)T \biggl\{ f(t) \ast E_{\eta } \biggl( \frac{\eta }{\eta -1}t^{\eta } \biggr) \biggr\} - \varphi (s)T \bigl\{ f(0)\ast E_{\eta } ( 0 ) \bigr\} \biggr], \end{aligned}$$


$$ T \bigl\{ {}_{0}^{ABR}D_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} = \frac{\mathcal{K}(\eta )}{1-\eta } \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{1-\eta }}\mathcal{F}_{\mathrm{J}}(s). $$


Corollary 3

  • If \(\varphi (s)=1\) and \(\psi (s)=s\), then the Laplace transform is given by [19, 20]

    $$ L \bigl\{ {}_{0}^{ABR}D_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} = \frac{\mathcal{K}(\eta )}{1-\eta } \frac{s^{\eta }}{s^{\eta }+\frac{\eta }{1-\eta }} \mathcal{F}_{\mathrm{J}}(s). $$
  • If \(\varphi (s)=s\) and \(\psi (s)=\frac{1}{s}\), we have the Elzaki transform [39],

    $$ E \bigl\{ {}_{0}^{ABC}D_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} = \frac{\mathcal{K}(\eta )}{1-\eta } \frac{1}{1+\frac{\eta }{1-\eta }s^{\eta }} \mathcal{F}_{\mathrm{J}}(s). $$
  • If \(\varphi (s)=\psi (s)=\frac{1}{s}\), we get the Sumudu transform as follows [40]:

    $$ S \bigl\{ {}_{0}^{ABC}D_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} = \frac{\mathcal{K}(\eta )}{1-\eta } \frac{(\frac{1}{s})^{\eta }}{(\frac{1}{s})^{\eta }+\frac{\eta }{1-\eta }} \mathcal{F}_{\mathrm{J}}(s). $$
  • If \(\varphi (s)=1\) and \(\psi (s)=\frac{s}{u}\), then the Shehu transform of the Atangana–Baleanu fractional derivative in Riemann–Liouville sense [40] is given as

    $$ SH \bigl\{ {}_{0}^{ABC}D_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} = \frac{\mathcal{K}(\eta )}{1-\eta } \frac{(\frac{s}{u})^{\eta }}{(\frac{s}{u})^{\eta }+\frac{\eta }{1-\eta }} \mathcal{F}_{\mathrm{J}}(s). $$

Lemma 2

The new general integral transform of the function \(t^{\eta -1}\) is given as

$$ T \bigl\{ t^{\eta -1} \bigr\} = \frac{\Gamma ( \eta ) \varphi (s)}{\psi (s)^{\eta }},\quad \eta >0. $$


Applying the new general integral transform of the function \(t^{\eta -1}\), we get

$$ T \bigl\{ t^{\eta -1} \bigr\} =\varphi (s) \int _{0}^{\infty }t^{\eta -1}e^{- \psi (s)t}\,dt. $$

Let \(\Gamma ( \eta ) \) be the Gamma function defined by

$$ \Gamma ( \eta ) = \int _{0}^{\infty }u^{\eta -1}e^{-u}\,du. $$

Setting \(u=\psi (s)t\) implies \(du=\psi (s)\,dt\), then

$$ \Gamma ( \eta ) = \int _{0}^{\infty } \bigl( \psi (s)t \bigr) ^{\eta -1}e^{-\psi (s)t}\psi (s)\,dt=\psi (s)^{\eta } \int _{0}^{ \infty }t^{\eta -1}e^{-\psi (s)t} \,dt, $$


$$ \int _{0}^{\infty }t^{\eta -1}e^{-\psi (s)t}\,dt= \frac{\Gamma ( \eta ) }{\psi (s)^{\eta }}.$$


$$ T \bigl\{ t^{\eta -1} \bigr\} = \frac{\Gamma ( \eta ) \varphi (s)}{\psi (s)^{\eta }}. $$


Remark 2

Through the result in Lemma (2), we can deduce the Sumudu transform of the function \(t^{\eta -1}\) (see [41]) and the Shehu transform (see [40]).

Theorem 5

The general transform of the Atangana–Baleanu fractional integral of the function \(f(t)\) is given as

$$ T \bigl\{ {}_{0}^{AB}I_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} = \frac{1}{\mathcal{K}(\eta )}\frac{ ( 1-\eta ) \psi (s)^{\eta }+\eta }{\psi (s)^{\eta }} \mathcal{F}_{\mathrm{J}}(s). $$


Let \(\mathcal{F}_{\mathrm{J}}(s)\) be the new general transform of the function \(f(t)\), we have

$$\begin{aligned} T \bigl\{ {}_{0}^{AB}I_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} & = \frac{1-\eta }{\mathcal{K}(\eta )}T \bigl\{ f(t) \bigr\} + \frac{\eta }{\mathcal{K}(\eta )\Gamma (\eta )}T \biggl\{ \int _{0}^{t}f(x) (t-x)^{ \eta -1}\,dx \biggr\} \\ & =\frac{1-\eta }{\mathcal{K}(\eta )}T \bigl\{ f(t) \bigr\} + \frac{\eta }{\mathcal{K}(\eta )\Gamma (\eta )}T \bigl\{ f(t) \ast t^{\eta -1} \bigr\} . \end{aligned}$$

According to the convolution theorem (2) and Lemma (2), we obtain,

$$\begin{aligned} T \bigl\{ {}_{0}^{AB}I_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} & = \frac{1-\eta }{\mathcal{K}(\eta )}\mathcal{F}_{\mathrm{J}}(s)+ \frac{\eta }{\mathcal{K}(\eta )\Gamma (\eta )}\frac{1}{\varphi (s)}T \bigl\{ f(t) \bigr\} T \bigl\{ t^{\eta -1} \bigr\} \\ & =\frac{1-\eta }{\mathcal{K}(\eta )}\mathcal{F}_{\mathrm{J}}(s)+ \frac{\eta }{\mathcal{K}(\eta )\Gamma (\eta )} \frac{1}{\varphi (s)} \mathcal{F}_{\mathrm{J}}(s)\frac{\Gamma (\eta )\varphi (s)}{\psi (s)^{\eta }}, \end{aligned}$$


$$ T \bigl\{ {}_{0}^{AB}I_{t}^{\eta } \bigl(f(t)\bigr) \bigr\} = \frac{1}{\mathcal{K}(\eta )}\frac{ ( 1-\eta ) \psi (s)^{\eta }+\eta }{\psi (s)^{\eta }} \mathcal{F}_{\mathrm{J}}(s). $$


4 Applications

We now substantiate the theoretical aspects that we developed in the previous section by providing practical examples.

Example 1

Consider the following fractional initial value problem:

$$ {}_{0}^{ABC}D_{t}^{\eta }\bigl(u(t) \bigr)=f(t), \quad u(0)=c, c\in \mathbb{R} . $$

Applying the integral transform on both sides of Eq. (7),

$$ T \bigl\{ {}_{0}^{ABC}D_{t}^{\eta } \bigl(u(t)\bigr) \bigr\} =T \bigl\{ f(t) \bigr\} , $$


$$ \frac{\mathcal{K}(\eta )}{1-\eta } \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{1-\eta }} \biggl[ \mathcal{U}_{\mathrm{J}}(s)- \frac{\varphi (s)}{\psi (s)}u(0) \biggr] =\mathcal{F}_{\mathrm{J}}(s). $$


$$ \mathcal{U}_{\mathrm{J}}(s)=\frac{1-\eta }{\mathcal{K}(\eta )} \frac{\psi (s)^{\eta }+\frac{\eta }{1-\eta }}{\psi (s)^{\eta }} \mathcal{F}_{\mathrm{J}}(s)+\frac{\varphi (s)}{\psi (s)}u(0), $$

taking the inverse general transform, we obtain

$$ u(t)=T^{-1} \biggl\{ \frac{1-\eta }{\mathcal{K}(\eta )} \frac{\psi (s)^{\eta }+\frac{\eta }{1-\eta }}{\psi (s)^{\eta }} \mathcal{F}_{\mathrm{J}}(s)+\frac{\varphi (s)}{\psi (s)}u(0) \biggr\} . $$

If \(f(t)=t\), the equivalence of (7) is

$$ {}_{0}^{ABC}D_{t}^{\eta }\bigl(u(t) \bigr)=t,\quad u(0)=c,c\in \mathbb{R} , $$

whose solution is

$$\begin{aligned} u(t) & =T^{-1} \biggl\{ \frac{1-\eta }{\mathcal{K}(\eta )} \biggl( 1+ \frac{\eta }{1-\eta }\frac{1}{\psi (s)^{\eta }} \biggr) \frac{\varphi (s)}{\psi (s)}+ \frac{\varphi (s)}{\psi (s)}u(0) \biggr\} \\ & =\frac{1-\eta }{\mathcal{K}(\eta )}T^{-1} \biggl\{ \frac{\varphi (s)}{\psi (s)}+ \frac{\eta }{1-\eta }\frac{\varphi (s)}{\psi (s)^{\eta +1}}+ \frac{\varphi (s)}{\psi (s)}u(0) \biggr\} . \end{aligned}$$

The above equation reduces to

$$ u(t)=\frac{1-\eta }{\mathcal{K}(\eta )} \biggl( 1+c+\frac{\eta }{1-\eta } \frac{1}{\Gamma ( \eta +1 ) }t^{\eta } \biggr) . $$

Example 2

Consider the following nonlinear fractional differential equation:

$$ {}_{0}^{ABC}D_{t}^{\eta } \bigl( u(t) \bigr) +u(t)=f(t). $$

By employing the new general transform in Eq. (9), we get

$$ T \bigl\{ {}_{0}^{ABC}D_{t}^{\eta } \bigl( u(t) \bigr) \bigr\} +T \bigl\{ u(t) \bigr\} =T \bigl\{ f(t) \bigr\} , $$


$$ \frac{\mathcal{K}(\eta )}{1-\eta } \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{1-\eta }} \biggl[ \mathcal{U}_{\mathrm{J}}(s)- \frac{\varphi (s)}{\psi (s)}u(0) \biggr] +\mathcal{U}_{\mathrm{J}}(s)= \mathcal{F}_{\mathrm{J}}(s). $$


$$ \biggl( \frac{\mathcal{K}(\eta )}{1-\eta } \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{1-\eta }}+1 \biggr) \mathcal{U}_{\mathrm{J}}(s)= \frac{\mathcal{K}(\eta )}{1-\eta } \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{1-\eta }} \frac{\varphi (s)}{\psi (s)}u(0)+\mathcal{F}_{\mathrm{J}}(s), $$

it follows that

$$\begin{aligned}& \mathcal{U}_{\mathrm{J}}(s)= \frac{\mathcal{K}(\eta )}{\mathcal{K}(\eta )+1-\eta } \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{\mathcal{K}(\eta )+1-\eta }} \frac{\varphi (s)}{\psi (s)}u(0)+ \frac{1-\eta }{\mathcal{K}(\eta )+1-\eta } \frac{\psi (s)^{\eta }+\eta }{\psi (s)^{\eta }+\frac{\eta }{\mathcal{K}(\eta )+1-\eta }}\mathcal{F}_{\mathrm{J}}(s), \\& \begin{aligned} \mathcal{U}_{\mathrm{J}}(s) & = \frac{\mathcal{K}(\eta )}{\mathcal{K}(\eta )+1-\eta }\frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{\mathcal{K}(\eta )+1-\eta }} \frac{\varphi (s)}{\psi (s)}u(0)+ \frac{1-\eta }{\mathcal{K}(\eta )+1-\eta }\mathcal{F}_{\mathrm{J}}(s) \\ &\quad {} +\frac{\eta }{ ( \mathcal{K}(\eta )+1-\eta ) ^{2}} \frac{1}{\psi (s)^{\eta }+\frac{\eta }{\mathcal{K}(\eta )+1-\eta }}\mathcal{F}_{ \mathrm{J}}(s). \end{aligned} \end{aligned}$$

Using the inverse transform, the convolution theorem (2) and Corollary 1, we get

$$ T^{-1} \biggl\{ \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{\mathcal{K}(\eta )+1-\eta }}\frac{\varphi (s)}{\psi (s)} \biggr\} =E_{ \eta } \biggl( -\frac{\eta }{\mathcal{K}(\eta )+1-\eta }t^{\eta } \biggr) , $$


$$\begin{aligned} T^{-1} \biggl\{ \frac{1}{\psi (s)^{\eta }+\frac{\eta }{\mathcal{K}(\eta )+1-\eta }}\mathcal{F}_{\mathrm{J}}(s) \biggr\} & =T^{-1} \biggl\{ \frac{\varphi (s)}{\psi (s)^{\eta }+\frac{\eta }{\mathcal{K}(\eta )+1-\eta }} \biggr\} \ast f(t) \\ & =t^{\eta -1}E_{\eta } \biggl( -\frac{\eta }{\mathcal{K}(\eta )+1-\eta }t^{ \eta } \biggr) \ast f(t). \end{aligned}$$


$$\begin{aligned} u(t) & =T^{-1} \bigl\{ \mathcal{U}_{\mathrm{J}}(s) \bigr\} \\ &= \frac{\mathcal{K}(\eta )}{\mathcal{K}(\eta )+1-\eta }E_{\eta } \biggl( - \frac{\eta }{\mathcal{K}(\eta )+1-\eta }t^{\eta } \biggr) u(0)+ \frac{1-\eta }{\mathcal{K}(\eta )+1-\eta }f(t) \\ &\quad{}+\frac{\eta }{ ( \mathcal{K}(\eta )+1-\eta ) ^{2}}t^{ \eta -1}E_{\eta } \biggl( - \frac{\eta }{\mathcal{K}(\eta )+1-\eta }t^{ \eta } \biggr) \ast f(t). \end{aligned}$$

Note that, when \(\eta \rightarrow 1\) and \(f(t)=e^{-2t}\), then the exact solution is

$$ u(t)= \bigl( 1+u(0) \bigr) e^{-t} -e^{-2t} . $$

Example 3

We now consider Eq. (9) with the Riemann–Liouville derivative,

$$ {}_{ 0}^{\text{{ABR}}}D_{t}^{\eta } \bigl( u(t) \bigr) +u(t)=f(t). $$

Applying the new general transform in Eq. (10) yields

$$ \biggl( \frac{\mathcal{K}(\eta )}{1-\eta } \frac{\psi (s)^{\eta }}{\psi (s)^{\eta }+\frac{\eta }{1-\eta }}+1 \biggr) \mathcal{U}_{\mathrm{J}}(s)=T \bigl\{ f(t) \bigr\} . $$


$$\begin{aligned}& \mathcal{U}_{\mathrm{J}}(s)= \frac{(1-\eta )\psi (s)^{\eta }+\eta }{ ( \mathcal{K}(\eta )+1-\eta ) \psi (s)^{\eta }+\eta }\mathcal{F}_{ \mathrm{J}}(s), \\& u(t)=T^{-1} \biggl\{ \frac{(1-\eta )\psi (s)^{\eta }+\eta }{ ( \mathcal{K}(\eta )+1-\eta ) \psi (s)^{\eta }+\eta }\mathcal{F}_{ \mathrm{J}}(s) \biggr\} . \end{aligned}$$

If \(f(t)=\sin (t)\), (10) becomes

$$ {}_{0}^{ABR}D_{t}^{\eta } \bigl( u(t) \bigr) +u(t)=\sin (t) ,\quad 0< \eta \leq 1, $$

whose exact solution is

$$ u(t)=T^{-1} \biggl\{ \frac{(1-\eta )\psi (s)^{\eta }+\eta }{ ( \mathcal{K}(\eta )+1-\eta ) \psi (s)^{\eta }+\eta } \frac{\varphi (s)}{\psi (s)^{2}+1} \biggr\} . $$

In particular, when \(\eta \rightarrow 1\), we obtain

$$\begin{aligned} u(t) & =T^{-1} \biggl\{ \frac{1}{\psi (s)+1} \frac{\varphi (s)}{\psi (s)^{2}+1} \biggr\} \\ & =T^{-1} \biggl\{ 0.5\frac{\varphi (s)}{\psi (s)+1}-0.5\frac{\psi (s)\varphi (s)}{\psi (s)^{2}+1}+0.5 \frac{\varphi (s)}{\psi (s)^{2}+1} \biggr\} , \end{aligned}$$

with the exact solution

$$ u(t)=0.5 \bigl(e^{-t}-\cos t+\sin t \bigr). $$

5 Conclusion

We explored the feasibility of applying the generalized integral transform (Jafari transform) in fractional calculus, the Atangana–Baleanu derivative with its corresponding integral is used as a case in point. It is proved that imposing certain conditions on the Jafari transform leads to other integral transforms. To prove the applicability of this generalised integral transform, practical examples are given. This generalised integral transform resembles other integral transforms in that it is easy to implement and offers the convenience of using a table in the solution procedure of differential equations.

Availability of data and materials

Not applicable.


  1. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon & Breach, Yverdon (1993)

    MATH  Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1998) 198, 10

    MATH  Google Scholar 

  4. Karapinar, E., Binh, H.D., Luc, N.H., Can, N.H.: On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems. Adv. Differ. Equ. 2021, 70 (2021)

    Article  MathSciNet  Google Scholar 

  5. Adiguzel, R.S., Aksoy, U., Karapınar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. (2020).

    Article  Google Scholar 

  6. Afshari, H., Karapınar, E.: A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces. Adv. Differ. Equ. 2020, Article number 616 (2020)

    Article  MathSciNet  Google Scholar 

  7. Afshari, H., Kalantari, S., Karapinar, E.: Solution of fractional differential equations via coupled fixed point. Electron. J. Differ. Equ. 2015, No. 286, pp. 1–12 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alqahtani, B., Aydi, H., Karapınar, E., Rakocevic, V.: A solution for Volterra fractional integral equations by hybrid contractions. Mathematics 7, 694 (2019)

    Article  Google Scholar 

  9. Abdeljawad, A., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11, 686 (2019)

    Article  MATH  Google Scholar 

  10. Afshari, H., Atapour, M., Karapinar, E.: A discussion on a generalized Geraghty multi-valued mappings and applications. Adv. Differ. Equ. 2020, 356 (2020)

    Article  MathSciNet  Google Scholar 

  11. Hosseini, V.R., Koushki, M., Zou, W.N.: The meshless approach for solving 2D variable-order time-fractional advection–diffusion equation arising in anomalous transport. Eng. Comput. (2021).

    Article  Google Scholar 

  12. Hosseini, V.R., Yousefi, F., Zou, W.N.: The numerical solution of high dimensional variable-order time fractional diffusion equation via the singular boundary method. J. Adv. Res. (2020).

    Article  Google Scholar 

  13. Hosseini, V.R., Shivanian, E., Chen, W.: Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur. Phys. J. Plus 130(2), 1–21 (2015)

    Article  Google Scholar 

  14. Tuan, N.H., Mohammadi, H., Rezapour, Sh.: A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos Solitons Fractals 140, 110107 (2020)

    Article  MathSciNet  Google Scholar 

  15. Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38(6), 1191–1204 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Karapinar, E., Moustafa, S.I., Shehata, A., Agarwal, R.P.: Fractional hybrid differential equations and coupled fixed-point results for α-admissible \(F(\psi _{1},\psi _{2})\)-contractions in M-metric spaces. Discrete Dyn. Nat. Soc. 2020, Article ID 7126045 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  18. Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 87–92 (2015)

    Google Scholar 

  19. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  20. Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Boudaoui, A., El hadj Moussa, Y., Hammouch, Z., Ullah, S.: A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel. Chaos Solitons Fractals 146, 110859 (2021)

    Article  MathSciNet  Google Scholar 

  22. Atangana, A.: On the new fractional derivative and application to nonlinear Fisher’s reaction diffusion equation. Appl. Math. Comput. 273, 948–956 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Al-Refai, M.: On weighted Atangana–Baleanu fractional operators. Adv. Differ. Equ. 2020, 3 (2020)

    Article  MathSciNet  Google Scholar 

  24. Lazreg, J.E., Abbas, S., Karapinar, E.: Impulsive Caputo–Fabrizio fractional differential equations in b-metric spaces. Mathematics 19, 363–372 (2021)

    MathSciNet  Google Scholar 

  25. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115, 155 (2021).

    Article  MathSciNet  Google Scholar 

  26. Salim, A., Benchohra, M., Karapinar, E., Lazreg, J.E.: Existence and Ulam stability for impulsive generalised Hilfer-type fractional differential equations. Adv. Differ. Equ. 2020, 601 (2020)

    Article  Google Scholar 

  27. Derbazi, C., Baitiche, Z., Benchohra, M.: Cauchy problem with ψ-Caputo fractional derivative in Banach spaces. Adv. Theory Nonlinear Anal. Appl. 4(4), 349–360 (2021)

    Google Scholar 

  28. Baitiche, Z., Derbazi, C., Benchohra, M.: ψ–Caputo fractional differential equations with multi-point boundary conditions by topological degree theory. Results Nonlinear Anal. 3(4), 167–178 (2021)

    Google Scholar 

  29. Dyke, P.: An Introduction to Laplace Transforms and Fourier Series. Springer, London (2014)

    Book  MATH  Google Scholar 

  30. Yang, X.-J.: Theory and Applications of Special Functions for Scientists and Engineers. Springer, Singapore (2021)

    Google Scholar 

  31. Elzaki, T.M.: The new integral transform ‘Elzaki transform’. Glob. J. Pure Appl. Math. 7, 57–64 (2011)

    Google Scholar 

  32. Watugala, G.K.: Sumudu transform: a new integral transform to solve differential equations and control engineering problems. Int. J. Math. Educ. Sci. Technol. 24(1), 35–43 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maitama, S., Zhao, W.: New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations. Int. J. Anal. Appl. 17(2), 167–190 (2019)

    MATH  Google Scholar 

  34. Manjarekar, S., Bhadane, A.P.: Generalized Elzaki–Tarig transformation and its applications to new fractional derivative with non singular kernel. Prog. Fract. Differ. Appl. 3(3), 227–232 (2017)

    Article  Google Scholar 

  35. Jafari, H.: A new general integral transform for solving integral equations. J. Adv. Res. (2020).

    Article  Google Scholar 

  36. Prabhakar, T.R.: A singular integral equation with generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  37. Gupta, V.G., Sharma, B.: Application of Sumudu transform in reaction-diffusion systems and nonlinear waves. Appl. Math. Sci. 4(9), 435–446 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Belgacem, R., Baleanu, D., Bokhari, A.: Shehu transform and applications to Caputo fractional differential equations. Int. J. Anal. Appl. 17(6), 917–927 (2019)

    Google Scholar 

  39. Yavuz, M., Abdeljawad, T.: Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel. Adv. Differ. Equ. 2020, 367 (2020)

    Article  MathSciNet  Google Scholar 

  40. Bokhari, A., Baleanu, D., Belgacema, R.: Application of Shehu transform to Atangana–Baleanu derivatives. J. Math. Comput. Sci. 20, 101–107 (2020)

    Article  Google Scholar 

  41. Belgacem, F.M., Karaballi, A.A., Kalla, S.: Analytical investigations of the Sumudu transform and applications to integral production equations. Math. Probl. Eng. 2003(3), 103–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references


We would like thank the editor and reviewers for their thoughtful and detailed comments on our paper.


Not applicable.

Author information

Authors and Affiliations



All authors have read and approved the final manuscript.

Corresponding author

Correspondence to H. Jafari.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meddahi, M., Jafari, H. & Ncube, M.N. New general integral transform via Atangana–Baleanu derivatives. Adv Differ Equ 2021, 385 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • 34A08
  • 65M70
  • 11B68


  • Fractional derivative
  • Laplace transform
  • Mittag-Lefller function
  • Atangana–Baleanu derivative
  • Fractional differential equation