- Research
- Open access
- Published:
A nonlinear fractional Rayleigh–Stokes equation under nonlocal integral conditions
Advances in Difference Equations volume 2021, Article number: 388 (2021)
Abstract
In this paper, we study the fractional nonlinear Rayleigh–Stokes equation under nonlocal integral conditions, and the existence and uniqueness of the mild solution to our problem are considered. The ill-posedness of the mild solution to the problem recovering the initial value is also investigated. To tackle the ill-posedness, a regularized solution is constructed by the Fourier truncation method, and the convergence rate to the exact solution of this method is demonstrated.
1 Introduction
Most of fluids in the real world, such as in food products (mayonnaise, mustard, chocolate, ketchup, butter, cheese, yogurt, etc.), in natural substances (honey, magma, lava, gums, etc.), in biology (blood, semen, synovia, mucus, etc.), in industry (paint, glue, lubricant, ink, molten polymer, etc.), in cosmetics (soap solution, toothpaste, cream, silicone, nail polish, etc.) are treated as non-Newtonian fluids. Therefore, the study on non-Newtonian fluids is a substantial subject in science and industrial applications. As the Rayleigh–Stokes problem for an edge, the first problem of Stokes for a non-Newtonian fluid flow past an impulsively started flat plate has received much attention because of its practical importance [1, 2]. For a second grade fluid, the equation of motion is of higher order than the Navier–Stokes equation, because it exhibits all properties of viscoelastic fluids.
Recently, fractional calculus has encountered much success in the description of constitutive relations of viscoelastic fluids. The starting point of the fractional derivative model of a viscoelastic fluid is usually a classical differential equation which is modified by replacing the time derivative of an integer order with a fractional calculus operator. This generalization allows one to define precisely noninteger order integrals or derivatives.
Moreover, there has currently been a considerable increase in examining fractional partial differential equations (FPDEs). We can list several current remarkable research studies; for instance, Abdolrazaghi and Razani [3], Behboudi et al. [4], Ding and Neito [5], Agarwal et al. [6], Baleanu [7], Adiguzel et al. [8–10], Afshari et al. [11], Alqahtani et al. [12], Karapinar et al. [13], Abdeljawad et al. [14], Baitiche et al. [15], Ardjouni [16] and the references therein.
In this research study, we focus on the Rayleigh–Stokes problem as follows:
associated with the nonlocal integral condition
where \(\xi _{1}, \xi _{2}>0\) and \(\xi _{1}^{2}+\xi _{2}^{2}>0\). Here, \(u(x,t)\) is fluid velocity, μ is viscosity, F is a source function, Δ is the Laplacian, \(\Omega \subset \mathbb{R}^{d}\) (\(d=1,2,3\)) is a smooth domain with the boundary ∂Ω, and \(T>0\) is a given time, g is the final data in \(L^{2}(\Omega )\), \(\partial _{t}=\partial /\partial t\), and \(\partial _{t}^{\alpha }\) is the Riemann–Liouville fractional derivative of order \(\alpha \in (0,1)\) defined in [17, 18]:
where \(\Gamma (.)\) is the gamma function.
The forward problems for equation (1.1) have been examined in a plenty of studies. For instance, Zierep and Fetecau [19] discussed the energetic balance in the Rayleigh–Stokes problem for a Maxwell fluid for several initial and/or boundary conditions. Fetecau and Zierep [20] found the exact solutions both for the Stokes’ problem and for the Rayleigh–Stokes problem within the context of the fluids of second grade. Bazhlekova et al. [21] presented an introduction about an analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. The exact solution of the Rayleigh–Stokes problem for a generalized second grade fluid in a porous half-space with a heated flat plate was considered by Xue et al. [22]. Exact solutions of the Rayleigh–Stokes equation in the case of homogeneous initial and boundary conditions was considered by Zhao and Yang [23]. The backward problems have currently been studied by many mathematicians. Ngoc et al. [24], for instance, pondered the inverse problem for the nonlinear fractional Rayleigh–Stokes equations. Equation (1.1) associated with Gaussian random noise was examined by Triet et al. [25], and so forth.
To the best of our knowledge, there are still very few studies on the Rayleigh–Stokes equation accompanied with nonlocal integral conditions. In comparison with the initial condition \(u(x,0)=f(x)\) or the final condition \(u(x,T)=g(x)\), the nonlocal conditions are of more significant complexity. Furthermore, it is emphasized that we cannot apply Parseval’s equality to obtain stable estimates in the \(L^{p}\) space. To tackle this limitation, we need to develop additional techniques and Sobolev embedding in our study.
This manuscript is structured as follows. An introduction of preliminary results is described in Sect. 2; the regularity of the mild solution to the problem in a linear case is illustrated in Sect. 3. In Sect. 4, the problem recovering the initial value and the convergence of the regularized solution are detailed. The regularity of the mild solution to the problem in the nonlinear case is mentioned in Sect. 5. Eventually, the conclusion is presented in Sect. 6.
2 Preliminary results
We recall the spectral problem as follows:
admitting the eigenvalues \(0 < \lambda _{1} \leq \lambda _{2} \leq \cdots \leq \lambda _{n} \leq \dots \) with \(\lambda _{n} \to \infty \) as \(n\to \infty \) (see [26]). The corresponding eigenfunctions \(\phi _{n} \in H_{0}^{1}(\Omega )\). For all \(s\geq 0\), the operator \(A^{s}\) (here \(A=-\Delta \)) also possesses the following representation:
Consider on \(D(A^{s})\) the norm (noting that \(\lambda _{1}>0\))
By duality, we can set \(D(A^{-s})=(D(A^{s}))^{\ast }\) by identifying \((L^{2}(\Omega ))^{\ast }=L^{2} ( \Omega ) \) and using the so-called Gelfand triple (see [27]). Then \(D(A^{-s})\) is a Hilbert space with the following norm:
wherein \(\langle \cdot ,\cdot \rangle \) denotes the duality bracket between \(D(A^{-s})\) and \(D(A)\). For any \(p\geq 0\), we define the space
where \(\langle \cdot ,\cdot \rangle \) is the inner product in \(L^{2}(\Omega )\), then \(\mathcal{H}(\Omega )\) is a Hilbert space with the norm
Suppose that problem (1.1) has a solution u which admits the form \(u(x,t)=\sum_{n=1}^{\infty } \langle u(x,t), \phi _{n}(x) \rangle \phi _{n}(x) \). From [21, 24], we deduce that the solution of problem (1.1) with the initial condition \(u(x, 0)=u_{0}(x)\) is given by
where \(\mathbf{S}_{n,\alpha }(t)\) is given by
and its Laplace transform is given by \(\mathcal{L} (\mathbf{S}_{n,\alpha }(t) )= \frac{1}{t+ \mu \lambda _{n} t^{\alpha }+\lambda _{n}} \). This implies that
We can easily see that
where \(F_{n}(u(s))=\langle F(u(\cdot ,s)),\phi (x) \rangle \).
From the equation
we have that
where \(g_{n}=\langle g(\cdot ),\phi (x) \rangle \).
Thanks to the uniqueness of the Fourier expansion of a function in \(L^{2}\) space, we get
By a straightforward computation, we obtain
Conjoining (2.4) and (2.8), we have
As a result, we have the formula or the mild solution of problem (1.1)–(1.2)
We posit the terms \(\mathcal{A}_{j=1,2,3}(x,t)\) as follows:
Then we have
Lemma 2.1
If \(\alpha \in (0, 1)\), we have that the subsequent estimations hold
where
Proof
The detailed interpretation can be found in [24]. We briefly present some main steps of the proof. We have
In terms of the left-hand side of inequality (2.12), we have
It is worth noting that
With regard to the right-hand side of inequality (2.12), we have
□
For the rest of paper, we give the definition of a mild solution to problem (1.1)–(1.2) in the subsequent notion.
Definition 2.1
The function u is called a mild solution of problem (1.1)–(1.2) if
(i) u belongs to the \(L^{m}(0,T;L^{2}(\Omega ))\) space;
(ii) u satisfies equality (2.9).
3 The regularity of the mild solution to problem (1.1)–(1.2) in the linear case
In this section, we consider the regularity of the mild solution of problem (1.1)–(1.2) under the condition that the source term is linear.
Theorem 3.1
Suppose that there exist M, N such that \(Nt^{-\gamma }\leq v(t)\leq Mt^{-\theta }\) for \(\gamma , \theta <\frac{1}{2}\).
(i) Let \(1/2 <\alpha <1\) and \(s>0\). If \(\xi _{1}>0\), \(\xi _{2}>0\) and \(g \in D(A^{s}) \), \(F\in L^{2}(0,T;D(A^{s-1}))\), we rest assured that
(ii) Let \(1/2 <\alpha <1\) and \(s>0\). If \(\xi _{1}=0\), \(\xi _{2}>0\) and \(g \in D(A^{s}) \), \(F\in L^{2}(0,T;D(A^{s-1}))\), then we can conclude that
Proof
We will estimate the terms \(\mathcal{A}_{1}(x,t)\), \(\mathcal{A}_{2}(x,t)\), and \(\mathcal{A}_{3}(x,t)\) in two cases: \(\xi _{1},\xi _{2} >0\) and \(\xi _{1}=0\), \(\xi _{2}>0 \).
Part i: In the case of \(\xi _{1},\xi _{2} >0\). Thanks to Parseval’s equality, we have
This implies
Similarly, the term \(\|\mathcal{A}_{2}(\cdot ,t)\|_{D}(A^{2})\) can be assessed as follows:
Note that \(\theta <\frac{1}{2}\), we have
Put another way, the integral \(\int _{0}^{T}v^{2}(t)\,dt\) is convergent
Conjoining (3.5), (3.6), and (3.7), we arrive at
In other words, we have
Using Parseval’s equality again, we can estimate the term \(\mathcal{A}_{3}(\cdot ,t)\) as follows:
The latter estimation allows us to deduce that
Combining (3.4), (3.9), and (3.11) helps us rest assured that
Part ii: In the case of \(\xi _{1}=0\), \(\xi _{2} >0\).
Paserval’s equality gives us
It should be noted that
and
We get
Therefore, we immediately obtain that
In terms of \(\mathcal{A}_{2}(\cdot ,t)\), by computations similar to above, we have
This implies
Connecting (3.15), (3.16), and (3.17) allows us to come to a conclusion that
□
4 The problem recovering the initial value
In this section, we are inclined to deliberate on the following problem:
Our primary aim in this part is to recover the initial data \(u(x,0)=V(x)\). To achieve this goal, we firstly go to prove the point that the problem is ill-posed in \(L^{2}(0,T)\). For convenience of readers, we presume that \(F=0\).
From the formula of the mild solution (2.10), we have that
Theorem 4.1
In the sense of Hadamard, problem (4.1) is ill-posed in the space \(L^{2}(0,T)\) with reference to the case of \(t=0\).
Proof
We ponder on the linear operator \(\mathcal{K}:L^{2}(D)\to L^{2}(D)\) as follows:
where
It is worth mentioning that \(m(x,\tau )=m(\tau ,x)\). Therefore, the operator \(\mathcal{K}\) is self-adjoint and the compactness of \(\mathcal{K}\) is presented as follows.
We define the finite rank operator \(\mathcal{K}_{L}\)
In that
This allows us to conclude that \(\mathcal{K}\) is a compact operator. In conjunction with (4.3), we have
Combining the latter conclusion and using Kirsch [28], we deduce that the problem of recovering the initial value V from (4.7) is ill-posed. To ensure mathematical clarity, we provide an example as follows. If we choose the input data \(g^{j}(x)=\frac{\phi _{j}(x)}{\lambda _{j}^{1 /2}}\), the \(L^{2}\) norm of \(g^{j}\) is
and the initial data regarding \(g^{j}\) is
In the next step, we assess the initial data \(V^{j}\) in respect of \(L^{2}\) norm
Conjoining (4.8) with (4.10), we arrive at the conclusion that the solution of problem (4.1) is instable. □
With the aim of putting forward the next theory, we give an assumption as follows. Presume that \(g^{\epsilon } \in L^{p}(D)\) and \(F^{\epsilon } \in L^{\infty }(0,T;L^{p}(D))\) are noisy data, and presume
Using the Fourier truncation method, we provide a construction of regularized solution to problem (4.1) as follows:
Theorem 4.2
Let \((g^{\epsilon },F^{\epsilon })\) satisfy (4.11), and let b, δ be such that
Suppose that there exists β such that
Choose \(K=K(\epsilon )\) such that
Then we have that the following estimation holds:
Remark 4.1
On account of \(\lambda _{K}\sim K^{2/d}\), we need to choose K such that
In fact, we choose \(K=\epsilon ^{(r-1)d/2(\delta -b)}\) for \(0< r<1\), and then the error is of order
Proof
To begin with, we define the function \(W^{\epsilon }(x)\) in the following way:
As the next step, we ponder the term \(\|V^{\epsilon }-V\|_{D(A^{\delta })}\) and present an estimation of it with regard to the \(D(A^{\delta })\) norm for \(\delta >0\). Thanks to the triangle inequality, we obtain
In terms of \(\|W^{\delta }-V^{\delta }\|_{D(A^{\eta })}\), we have
From the Sobolev embedding \(L^{q}(\Omega )\hookrightarrow D(A^{b})\) for \(-\frac{d}{4}\leq b<0\) and \(q\geq \frac{2d}{d-4b}\), it should be noted that there exists a positive constant \(C(b,q)\) such that
We denote the two terms \(\mathcal{B}_{1}\) and \(\mathcal{B}_{2}\) as follows:
It is worth noting that \(\delta >b\), the term \(\mathcal{B}_{1}\) can be assessed in the following way:
Similarly, the term \(\mathcal{B}_{2}\) can be estimated as follows:
The latter estimation and the previous one allow us to have that
Regarding the term \(\|W^{\epsilon }-V\|_{D(A^{\delta })}\), we have
Conjoining (4.23) and (4.24), we come to the conclusion that
The Sobolev embedding \(D(A^{\delta })\hookrightarrow L^{\frac{2d}{d-4\delta }}(\Omega ) \) allows us to rest assured that
□
5 The regularity of the mild solution to problem (1.1)–(1.2) in the nonlinear case
In this section, we concentrate on examining the subsequent nonlinear problem
Theorem 5.1
Suppose that there exists \(Nt^{-\gamma }\leq v(t)\leq Mt^{-\theta }\) for \(\theta <1/2\).
(i) Let \(1/2 < \alpha < 1\), and presume \(0< s<1\). If \(\xi _{1}, \xi _{2}>0\), g belongs to \(D(A^{s})\), and F is a global Lipschitz source function satisfying
for T is small enough, then problem (5.1) has a unique solution
Furthermore, we have
(ii) Let \(1/2 < \alpha < 1\), and presume \(0< s<1\). If \(\xi _{1}=0\), \(\xi _{2}>0\), \(g\in D(A^{s+\alpha })\), and F is a global Lipschitz source function satisfying
for T is small enough, then problem (5.1) has a unique solution
Moreover, we have
Proof
Part i. Using (2.11) in Sect. 2, we obtain
For convenience of calculations in the next steps, we posit
where
With the purpose of proving the point that nonlinear equation (5.4) has a unique solution in \(L^{\infty }(0,T;D(A^{s}))\), we posit the following mapping:
Using the triangle inequality again, we have
We will show that the mapping \(\mathcal{I}\) is a contraction mapping in \(L^{\infty }(0,T;D(A^{s}))\). Now, we give estimations of the terms \(\|\mathcal{A}_{2}(w_{1})-\mathcal{A}_{2}(w_{2})\|_{L^{\infty }(0,T;D(A^{s}))}\) and \(\|\mathcal{A}_{3}(w_{1})-\mathcal{A}_{3}(w_{2})\|_{L^{\infty }(0,T;D(A^{s}))}\) as follows.
Step 1: In terms of the term \(\|\mathcal{A}_{2}(w_{1})-\mathcal{A}_{2}(w_{2})\|_{L^{\infty }(0,T;D(A^{s}))}\).
Firstly, we have
It is noteworthy that \(\frac{\mathbf{S}_{n,\alpha }(t)}{\xi _{1}+\xi _{2} \int _{0}^{T}v(t)\mathbf{S}_{n,\alpha }(t)\,dt} \leq \frac{C_{1}(\mu ,\alpha )}{\xi _{1}}\), we obtain
Thanks to the inequality \(\mathbf{S}_{n,\alpha }(t)\leq \frac{C_{1}(\mu ,\alpha )}{1+\lambda _{n}(t-s)^{1-\alpha }}\) (see Lemma (2.1)), we get
On account of \(s<1\), we have that
Using the global Lipschitz property of F, we arrive at
The Sobolev embedding \(D(A^{s})\hookrightarrow L^{2}(D)\) allows us to deduce that
This implies that, for any t, \(0\leq t \leq T\), we have
In other words,
We can see that the right-hand side of (5.14) is independent of t, as a result we reach the conclusion that
Step 2: In terms of the term \(\|\mathcal{A}_{3}(w_{1})(\cdot ,t)-\mathcal{A}_{3}(w_{2})(\cdot ,t) \|_{L^{\infty }(0,T;D(A^{s}))}\).
Thanks to Parseval’s equality and Holder’s inequality, we can assess the term \(\|\mathcal{A}_{3}(w_{1})(\cdot ,t)-\mathcal{A}_{3}(w_{2})(\cdot ,t) \|_{L^{\infty }(0,T;D(A^{s}))}\) in the following way:
It is worth noting that \(\alpha >1/2\), we get
We can estimate the term \(\int _{0}^{T}\sum_{n=1}^{\infty }\lambda _{n}^{2s-2} (F_{n}(s,w_{1}(s))-F_{n}(s,w_{2}(s)) )^{2}\,ds\) as follows:
where we used the global Lipschitz property of F function and note that \(s<1\).
Conjoining the latter estimate and the previous one, we claim that
Put another way,
this implies that
Combining (5.7), (5.16), and (5.20), we have that
Suppose that T is small enough such that
we can claim that \(\mathcal{I}\) is a contraction mapping in \(L^{\infty }(0,T;D(A^{s})\).
Furthermore, it should be noted that if \(w_{1}=0\), then
This implies
The latter estimation helps us assert that
On the basis of the Banach fixed point theorem, we claim that problem (5.1) has a unique solution belonging to the \(L^{\infty }(0,T;D(A^{s}))\) space. In addition, if we take \(w=0\), we have that
It is worth noting that \(M_{9}\sqrt{T}+M_{10}T^{\alpha -1}<1\), we get
We break the back of the proof of Part i.
Part ii: From (2.11) in Sect. 2, we get
where \(\mathcal{B}_{j}\) (\(j=1,2,3\)) are defined as follows:
and
Firstly, we posit the following function:
Similar to Part i, we go to prove the point that \(\mathcal{J}\) is a contraction mapping in \(L^{\infty }(0,t;D(A^{s}))\). In view of the triangle inequality, we have
The term \(\|\mathcal{B}_{2}(w_{1})-\mathcal{B}_{2}(w_{2})\|_{L^{\infty }(0,T;D(A^{s}))}\) can be estimated in the following way:
It is important to note that \(\mathbf{S}_{n,\alpha }(t)\geq \frac{C_{2}(\mu ,\alpha ,t)}{\lambda _{n}}\) and \(v(t)\geq Nt^{-\gamma }\), we get
In that,
With regard to the term \(\|\mathcal{B}_{3}(w_{1})-\mathcal{B}_{3}(w_{2})\|_{L^{\infty }(0,T;D(A^{s}))}\), by a similar calculation in Part i, we immediately obtain
Conjoining (5.29), (5.32), and (5.33), we have
Suppose that there exists T small enough such that
we arrive at the conclusion that \(\mathcal{J}\) is a contraction mapping in the space \({L^{\infty }(0,T;D(A^{s}))}\). Moreover, it is noteworthy that if \(w_{1}=0\), then
In conjunction with (3.4), we have
In other words,
The latter estimation allows us to deduce that if \(w_{1}(x,t)\in L^{\infty }(0,T;D(A^{s}))\), then
Thanks to the Banach fixed point theorem, we come to the conclusion that \(\mathcal{J}w=w\) has a unique solution \(w \in L^{\infty }(0,T;D(A^{s}))\). Furthermore, in a similar way to Part i, we take \(w=0\), and we immediately get
Put another way,
We get the proof out of the way. □
6 Conclusion
In this paper, we examined the fractional nonlinear Rayleigh–Stokes equation under nonlocal integral conditions. The existence and uniqueness are considered using the Fourier truncation method. The convergence rate between the obtained solution and the regularized solution is demonstrated.
Availability of data and materials
Not applicable.
References
Tan, W.C., Masuoka, T.: Stokes’ first problem for a second grade fluid in a porous halfspace with heated boundary. Int. J. Non-Linear Mech. 40(4), 515–522 (2005)
Tan, W.C., Masuoka, T.: Stokes’ first problem for an Oldroyd-B fluid in a porous halfspace. Phys. Fluids 17(2), 023101 (2005)
Abdolrazaghi, F., Razani, A.: A unique weak solution for a kind of coupled system of fractional Schrodinger equations. Opusc. Math. 40(3), 313–322 (2020)
Behboudi, F., Razani, A., Oveisiha, M.: Existence of a mountain pass solution for a nonlocal fractional \((p, q)\)-Laplacian problem. Bound. Value Probl. 2020, 149 (2020)
Ding, X.L., Nieto, J.J.: Analytical solutions for multi-term time-space fractional partial differential equations with nonlocal damping terms. Fract. Calc. Appl. Anal. 21, 312–335 (2018)
Agarwal, P., Nieto, J.J., Luo, M.J.: Extended Riemann–Liouville type fractional derivative operator with applications. Open Math. 15(1), 1667–1681 (2017)
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (2016)
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 20, 2 (2021)
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115, 155 (2021). https://doi.org/10.1007/s13398-021-01095-3
Afshari, H., Kalantari, S., Karapinar, E.: Solution of fractional differential equations via coupled fixed point. Electron. J. Differ. Equ. 2015, 286 (2015)
Alqahtani, B., Aydi, H., Karapınar, E., Rakočević, V.: A solution for Volterra fractional integral equations by hybrid contractions. Mathematics 7, 694 (2019)
Karapınar, E., Fulga, A., Rashid, M., Shahid, L., Aydi, H.: Large contractions on quasi-metric spaces with an application to nonlinear fractional differential-equations. Mathematics 7, 444 (2019)
Abdeljawad, T., Agarwal, R.P., Karapınar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11, 686 (2019)
Baitiche, Z., Derbazi, C., Benchohra, M.: phi-Caputo fractional differential equations with multi-point boundary conditions by topological degree theory. Results Nonlinear Anal. 3(4), 167–178 (2020)
Ardjouni, A.: Asymptotic stability in Caputo–Hadamard fractional dynamic equations. Results Nonlinear Anal. 4(2), 77–86 (2021)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. North–Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1990)
Zierep, J., Fetecau, C.: Energetic balance for the Rayleigh–Stokes problem of a Maxwell fluid. Int. J. Eng. Sci. 45(2–8), 617–627 (2007)
Fetecau, C., Zierep, J.: On a class of exact solutions of the equations of motion of a second grade fluid. Acta Mech. 150(1–2), 135–138 (2001)
Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numer. Math. 131, 1–31 (2015)
Xue, C., Nie, J.: Exact solutions of the Rayleigh–Stokes problem for a heated generalized second grade fluid in a porous half-space. Appl. Math. Model. 33(1), 524–531 (2009)
Zhao, C., Yang, C.: Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular microchannels. Appl. Math. Comput. 211(2), 502–509 (2009)
Ngoc, T.B., Luc, N.H., Au, V.V., Tuan, N.H., Zhou, Y.: Existence and regularity of inverse problem for the nonlinear fractional Rayleigh–Stokes equations. Math. Methods Appl. Sci. (2020) https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.6162
Triet, N.A., Hoan, L.V.C., Luc, N.H., Tuan, N.H., Thinh, N.V.: Identification of source term for the Rayleigh–Stokes problem with Gaussian random noise. Math. Methods Appl. Sci. 41(14), 5593–5601 (2018)
Dehghan, M.: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numer. Methods Partial Differ. Equ. 22(1), 220–257 (2006)
Arendt, W., ter Elst, A.F.M., Warma, M.: Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator. Commun. Partial Differ. Equ. 43(1), 1–24 (2018)
Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Applied Mathematical Sciences, vol. 120. Springer, New-York (2011)
Acknowledgements
The authors would like to thank for the support from the National Research Foundation of Korea under grant number NRF-2020K1A3A1A05101625 and from the Institute of Construction and Environmental Engineering at Seoul National University. The authors also would like to thank the handling editor and two anonymous referees for their valuable and constructive comments to improve our manuscript.
Funding
This research was funded by the National Research Foundation of Korea under grant number NRF-2020K1A3A1A05101625 and received the support from the Institute of Construction and Environmental Engineering at Seoul National University.
Author information
Authors and Affiliations
Contributions
The authors contributed equally. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Luc, N.H., Long, L.D., Van, H.T.K. et al. A nonlinear fractional Rayleigh–Stokes equation under nonlocal integral conditions. Adv Differ Equ 2021, 388 (2021). https://doi.org/10.1186/s13662-021-03545-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-021-03545-z