Let \(X = C [ {0,1} ] \times C [ {0,1} ]\). Define the norm \({ \Vert { ( {x,y} )} \Vert _{X}} = \Vert x \Vert + \Vert y \Vert \) on X,where \(\Vert x \Vert = \max_{0 \le t \le 1} \vert {x ( t )} \vert \), then X is a Banach space.
We define the cone
$$P = \Bigl\{ { ( {u,v} ) \in X:u \ge 0,v \ge 0, \min_{\frac{1}{4} \le t \le \frac{3}{4}} \bigl( {u ( t ) + v ( t )} \bigr) \ge K{{ \bigl\Vert { ( {u,v} )} \bigr\Vert }_{X}}} \Bigr\} , $$
where
$$ K = \min \bigl\{ {{N_{1}} ( {1 - {B_{1}}} ),{N_{2}} ( {1 - {B_{2}}} )} \bigr\} < 1, $$
(3.1)
\({{N_{1}},{N_{2}}}\) are defined by (2.2).
We define the operators \({L_{1}}\), \({L_{2}}\), and L as follows:
$$\begin{aligned}& {L_{1}} ( {u,v} ) ( t ) = \lambda \int _{0}^{1} {{G_{1}} ( {t,s} ){f_{1}} \bigl( {s,u ( s ),v ( s )} \bigr)} \,ds,\quad t \in [ {0,1} ], \\& {L_{2}} ( {u,v} ) ( t ) = \mu \int _{0}^{1} {{G_{2}} ( {t,s} ){f_{2}} \bigl( {s,u ( s ),v ( s )} \bigr)} \,ds,\quad t \in [ {0,1} ], \\& L ( {u,v} ) = \bigl( {{L_{1}} ( {u,v} ),{L_{2}} ( {u,v} )} \bigr),\quad \forall ( {u,v} ) \in X, \end{aligned}$$
where \({G_{i}} ( {t,s} ) ( {i = 1,2} )\) is defined by (2.1).
Obviously, fixed points of the operator L in P are positive solutions of system (1.1).
Lemma 3.1
\(L:P \to P\) is completely continuous.
Proof
We easily know that \({L_{1}} ( {u,v} ) ( t ) \ge 0\), \({L_{2}} ( {u,v} ) ( t ) \ge 0\) for \(( {u,v} ) \in P\), \(t \in [ {0,1} ]\).
Obviously, by Lemma 2.4, for \(( {u,v} ) \in P\), when \(t \in [ {\frac{1}{4},\frac{3}{4}} ]\), we have
$$ \begin{aligned}[b] {L_{1}} ( {u,v} ) ( t ) &= \lambda \int _{0}^{1} {{G_{1}} ( {t,s} ){f_{1}} \bigl( {s,u ( s ),v ( s )} \bigr)} \,ds \\ &\ge \frac{{\lambda {N_{1}}}}{{\Gamma ( {{\theta _{1}}} )}} \int _{0}^{1} {{{ ( {1 - s} )}^{{\theta _{1}} - 1}} {f_{1}} \bigl( {s,u ( s ),v ( s )} \bigr)\,ds} \\ & = \frac{{\lambda {N_{1}} ( {1 - {B_{1}}} )}}{{\Gamma ( {{\theta _{1}}} )}} \int _{0}^{1} { \frac{{{{ ( {1 - s} )}^{{\theta _{1}} - 1}}}}{{ ( {1 - {B_{1}}} )}}{f_{1}} \bigl( {s,u ( s ),v ( s )} \bigr)\,ds} \\ & \ge \lambda {N_{1}} ( {1 - {B_{1}}} )\max _{t \in [ {0,1} ]} \int _{0}^{1} {{G_{1}} ( {t,s} ){f_{1}} \bigl( {s,u ( s ),v ( s )} \bigr)} \,ds \\ & = {N_{1}} ( {1 - {B_{1}}} ) \bigl\Vert {{L_{1}} ( {u,v} )} \bigr\Vert . \end{aligned} $$
(3.2)
Similarly, we get
$$ {L_{2}} ( {u,v} ) ( t ) \ge {N_{2}} ( {1 - {B_{2}}} ) \bigl\Vert {{L_{2}} ( {u,v} )} \bigr\Vert ,\quad ( {u,v} ) \in P,t \in \biggl[ {\frac{1}{4}, \frac{3}{4}} \biggr]. $$
(3.3)
From (3.2) and (3.3), we have
$$ \begin{aligned}[b] & \min_{t \in [ { \frac{1}{4},\frac{3}{4}} ]} \bigl( {{L_{1}} ( {u,v} ) ( t ) + {L_{2}} ( {u,v} ) ( t )} \bigr) \\ &\quad \ge {N_{1}} ( {1 - {B_{1}}} ) \bigl\Vert {{L_{1}} ( {u,v} )} \bigr\Vert + {N_{2}} ( {1 - {B_{2}}} ) \bigl\Vert {{L_{2}} ( {u,v} )} \bigr\Vert \\ &\quad \ge K{ \bigl\Vert {L ( {u,v} )} \bigr\Vert _{X}}. \end{aligned} $$
(3.4)
By (3.4), we get \(L (P ) \subset P\). From the paper [12], we know that \({L_{1}}\), \({L_{2}}\) are completely continuous. So L is completely continuous. The proof is completed. □
For convenience, we first list the following denotations:
$$\begin{aligned}& {z_{0}} = \lim_{ ( {u,v} ) \to ( {{0^{+} },{0^{+} }} )} \sup _{t \in [ {0,1} ]} \frac{{{f_{1}} ( {t,u,v} )}}{{u + v}},\qquad z_{0}^{*} = \lim_{ ( {u,v} ) \to ( {{0^{+} },{0^{+} }} )} \sup_{t \in [ {0,1} ]} \frac{{{f_{2}} ( {t,u,v} )}}{{u + v}}, \end{aligned}$$
(3.5)
$$\begin{aligned}& {z_{\infty }} = \lim_{ ( {u,v} ) \to ( { + \infty , + \infty } )} \inf_{t \in [ {\frac{1}{4},\frac{3}{4}} ]} \frac{{{f_{1}} ( {t,u,v} )}}{{u + v}},\qquad z_{{\infty }}^{*} = \lim_{ ( {u,v} ) \to ( { + \infty , + \infty } )} \inf_{t \in [ {\frac{1}{4},\frac{3}{4}} ]} \frac{{{f_{2}} ( {t,u,v} )}}{{u + v}}, \end{aligned}$$
(3.6)
$$\begin{aligned}& {P_{1}} = \frac{1}{{\Gamma ( {{\theta _{1}}} ) ( {1 - {B_{1}}} )}} \int _{0}^{1} {{{ ( {1 - s} )}^{{\theta _{1}} - 1}}\,ds} ,\qquad {P_{2}} = \frac{1}{{\Gamma ( {{\theta _{2}}} ) ( {1 - {B_{2}}} )}} \int _{0}^{1} {{{ ( {1 - s} )}^{{\theta _{2}} - 1}}\,ds} , \end{aligned}$$
(3.7)
$$\begin{aligned}& {P_{3}} = \frac{{{N_{1}}K}}{{\Gamma ( {{\theta _{1}}} )}} \int _{ \frac{1}{4}}^{\frac{3}{4}} {{{ ( {1 - s} )}^{{\theta _{1}} - 1}}\,ds} ,\qquad {P_{4}} = \frac{{{N_{2}}K}}{{\Gamma ( {{\theta _{2}}} )}} \int _{ \frac{1}{4}}^{\frac{3}{4}} {{{ ( {1 - s} )}^{{\theta _{2}} - 1}}\,ds}. \end{aligned}$$
(3.8)
Theorem 3.1
Let \({z_{0}},z_{0}^{*},{z_{\infty }},z_{\infty }^{*} \in ( {0, + \infty } )\), \({Q_{1}} < {Q_{2}}\), \({Q_{3}} < {Q_{4}}\). Then when \(\lambda \in ( {{Q_{1}},{Q_{2}}} )\) and \(\mu \in ( {{Q_{3}},{Q_{4}}} )\) hold, we get that system (1.1) has at least one positive solution, where
$${Q_{1}} = \frac{1}{{2{z_{\infty }}{P_{3}}}},\qquad {Q_{2}} = \frac{1}{{2{z_{0}}{P_{1}}}},\qquad {Q_{3}} = \frac{1}{{2z_{{\infty }}^{*}{P_{4}}}},\qquad {Q_{4}} = \frac{1}{{2z_{0}^{*}{P_{2}}}}. $$
Proof
It is easy to see that there exists \(\varepsilon >0\) such that, for \(\lambda \in ( {{Q_{1}},{Q_{2}}} )\) and \(\mu \in ( {{Q_{3}},{Q_{4}}} )\), we have
$$\frac{1}{{2 ( {{z_{\infty }} - \varepsilon } ){P_{3}}}} \le \lambda \le \frac{1}{{2 ( {{z_{0}} + \varepsilon } ){P_{1}}}},\qquad \frac{1}{{2 ( {z_{{\infty }}^{*} - \varepsilon } ){P_{4}}}} \le \mu \le \frac{1}{{2 ( {z_{0}^{*} + \varepsilon } ){P_{2}}}}. $$
By (3.5), for the above \(\varepsilon >0\), there exists a constant \({R_{1}} > 0\) such that
$$\begin{gathered} {f_{1}} ( {t,u,v} )\leq ( {{z_{0}} + \varepsilon } ) ( {u + v} ),\quad 0 \le u + v \le {R_{1}},t \in [ {0,1} ], \\ {f_{2}} ( {t,u,v} )\leq \bigl( {z_{0}^{*} + \varepsilon } \bigr) ( {u + v} ),\quad 0 \le u + v \le {R_{1}},t \in [ {0,1} ]. \end{gathered} $$
Let \({\Omega _{1}} = \{ { ( {u,v} ) \in X| \ {{ \Vert { ( {u,v} )} \Vert }_{X}} < {R_{1}}} \} \). For any \(( {u,v} ) \in P\bigcap \partial {\Omega _{1}}\), by Lemma 2.4 and (3.1), we have
$$\begin{aligned} {L_{1}} ( {u,v} ) ( t ) &= \lambda \int _{0}^{1} {{G_{1}} ( {t,s} ){f_{1}} \bigl( {s,u ( s ),v ( s )} \bigr)} \,ds \\ & \le \frac{\lambda }{{\Gamma ( {{\theta _{1}}} ) ( {1 - {B_{1}}} )}} \int _{0}^{1} {{{ ( {1 - s} )}^{{\theta _{1}} - 1}} ( {{z_{0}} + \varepsilon } ) \bigl( {u ( s ) + v ( s )} \bigr)\,ds} \\ & \le \frac{{\lambda ( {{z_{0}} + \varepsilon } )}}{{\Gamma ( {{\theta _{1}}} ) ( {1 - {B_{1}}} )}} \int _{0}^{1} {{{ ( {1 - s} )}^{{\theta _{1}} - 1}}\,ds} \bigl( { \Vert u \Vert + \Vert v \Vert } \bigr) \\ & = \lambda ( {{z_{0}} + \varepsilon } ){P_{1}} \bigl( { \Vert u \Vert + \Vert v \Vert } \bigr) \\ & \le \frac{1}{2}{ \bigl\Vert { ( {u , v} )} \bigr\Vert _{X}}. \end{aligned}$$
Also, we get
$$\begin{aligned} {L_{ {2}}} ( {u,v} ) ( t ) &= \mu \int _{0}^{1} {{G_{{2}}} ( {t,s} ){f_{{2}}} \bigl( {s,u ( s ),v ( s )} \bigr)} \,ds \\ & \le \frac{\mu }{{\Gamma ( {{\theta _{{2}}}} ) ( {1 - {B_{{2}}}} )}} \int _{0}^{1} {{{ ( {1 - s} )}^{{\theta _{{2}}} - 1}} \bigl( {z_{0}^{*} + \varepsilon } \bigr) \bigl( {u ( s ) + v ( s )} \bigr)\,ds} \\ & \le \frac{{\mu ( {z_{0}^{*} + \varepsilon } )}}{{\Gamma ( {{\theta _{{2}}}} ) ( {1 - {B_{{2}}}} )}} \int _{0}^{1} {{{ ( {1 - s} )}^{{\theta _{{2}}} - 1}}\,ds} \bigl( { \Vert u \Vert + \Vert v \Vert } \bigr) \\ & = \mu \bigl( {z_{0}^{*} + \varepsilon } \bigr){P_{2}} \bigl( { \Vert u \Vert + \Vert v \Vert } \bigr) \\ & \le \frac{1}{2}{ \bigl\Vert { (u,v) )} \bigr\Vert _{X}}. \end{aligned}$$
So
$$ \bigl\Vert {L ( {u,v} )} \bigr\Vert = \bigl\Vert {{L_{1}} ( {u,v} )} \bigr\Vert + \bigl\Vert {{L_{{2}}} ( {u,v} )} \bigr\Vert \le { \bigl\Vert { (u,v )} \bigr\Vert _{X}}, \quad \forall ( {u,v} ) \in P\cap \partial {\Omega _{1}}. $$
(3.9)
From (3.6), we know that there exist \(\varepsilon > 0\) and \({\overline{R} _{2}} > 0\) such that
$$\begin{aligned}& {f_{1}} ( {t,u,v} )\ge ( {{z_{\infty }} - \varepsilon } ) ( {u + v} ),\quad u + v \ge {\overline{R} _{2}}, t \in \biggl[ { \frac{1}{4},\frac{3}{4}} \biggr], \\& {f_{2}} ( {t,u,v} )\ge \bigl( {z_{\infty }^{*} - \varepsilon } \bigr) ( {u + v} ),\quad u + v \ge {\overline{R} _{2}}, t \in \biggl[ {\frac{1}{4},\frac{3}{4}} \biggr]. \end{aligned}$$
Let \({\Omega _{2}} = \{ { ( {u,v} ) \in X|\ {{ \Vert { (u,v )} \Vert }_{X}} < {R_{2}}} \} \), where \({R_{2}} = \max \{ {2{R_{1}},\frac{{{{\overline{R} }_{2}}}}{{K}}} \} \). From (3.1) and Lemma 2.4, for any \(( {u,v} ) \in P\cap \partial {\Omega _{2}}\), we have
$$\begin{aligned} {L_{1}} ( {u,v} ) \biggl(\frac{3}{4} \biggr) &= \lambda \int _{0}^{1} {{G_{1}} \biggl( { \frac{3}{4},s} \biggr){f_{1}} \bigl( {s,u ( s ),v ( s )} \bigr)} \,ds \\ & \ge \frac{{\lambda {N_{1}}}}{{\Gamma ( {{\theta _{1}}} )}} \int _{\frac{1}{4}}^{\frac{3}{4}} {{{ ( {1 - s} )}^{{ \theta _{1}} - 1}} ( {{z_{\infty }} - \varepsilon } ) \bigl( {u ( s ) + v ( s )} \bigr)\,ds} \\ & \ge \frac{{\lambda {N_{1}}K ( {{z_{\infty }} - \varepsilon } )}}{{\Gamma ( {{\theta _{1}}} )}} \int _{\frac{1}{4}}^{\frac{3}{4}} {{{ ( {1 - s} )}^{{ \theta _{1}} - 1}}\,ds} \bigl( { \Vert u \Vert + \Vert v \Vert } \bigr) \\ & = \lambda ( {{z_{\infty }} - \varepsilon } ){P_{3}} \bigl( { \Vert u \Vert + \Vert v \Vert } \bigr) \\ & \ge \frac{1}{2}{ \bigl\Vert { (u,v )} \bigr\Vert _{X}}, \end{aligned}$$
and
$$\begin{aligned} {L_{{2}}} ( {u,v} ) \biggl(\frac{3}{4} \biggr) &= \mu \int _{0}^{1} {{G_{{2}}} \biggl( { \frac{3}{4},s} \biggr){f_{{2}}} \bigl( {s,u ( s ),v ( s )} \bigr)} \,ds \\ & \ge \frac{{\mu {N_{2}}}}{{\Gamma ( {{\theta _{2}}} )}} \int _{ \frac{1}{4}}^{\frac{3}{4}} {{{ ( {1 - s} )}^{{\theta _{2}} - 1}} \bigl( {z_{\infty }^{*} - \varepsilon } \bigr) \bigl( {u ( s ) + v ( s )} \bigr)\,ds} \\ & \ge \frac{{\mu {N_{2}}K ( {z_{\infty }^{*} - \varepsilon } )}}{{\Gamma ( {{\theta _{2}}} )}} \int _{\frac{1}{4}}^{\frac{3}{4}} {{{ ( {1 - s} )}^{{ \theta _{2}} - 1}}\,ds} \bigl( { \Vert u \Vert + \Vert v \Vert } \bigr) \\ & = \mu \bigl( {z_{\infty }^{*} - \varepsilon } \bigr){P_{4}} \bigl( { \Vert u \Vert + \Vert v \Vert } \bigr) \\ & \ge \frac{1}{2}{ \bigl\Vert { (u,v )} \bigr\Vert _{X}}. \end{aligned}$$
So
$$ \bigl\Vert {L ( {u,v} )} \bigr\Vert = \bigl\Vert {{L_{1}} ( {u,v} )} \bigr\Vert + \bigl\Vert {{L_{{2}}} ( {u,v} )} \bigr\Vert \ge { \bigl\Vert { (u,v )} \bigr\Vert _{X}}, \quad \forall ( {u,v} ) \in P\cap \partial {\Omega _{2}}. $$
(3.10)
By virtue of (3.9), (3.10), and Lemma 2.5, we know that L has at least a fixed point \((u,v)\in P\cap (\overline{\Omega }_{2}\backslash \Omega _{1})\). Therefore, \((u,v)\) is one positive solution of system (1.1). □
Since the proofs of the following theorems are similar to Theorem 3.1, we only give the results as follows.
Theorem 3.2
Let \({z_{0}} = 0\), \(z_{0}^{*},{z_{\infty }},z_{\infty }^{*} \in ( {0, + \infty } )\), \({Q_{3}} < {Q_{4}}\). Then when \(\lambda \in ( {{Q_{1}}, + \infty } )\) and \(\mu \in ( {{Q_{3}},{Q_{4}}} )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.3
Let \(z_{0}^{*} = 0\), \({z_{0}},{z_{\infty }},z_{\infty }^{*} \in ( {0, + \infty } )\), \({Q_{1}} < {Q_{2}}\). Then when \(\lambda \in ( {{Q_{1}},{Q_{2}}} )\) and \(\mu \in ( {{Q_{3}}, + \infty } )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.4
Let \({z_{0}} = 0\), \(z_{0}^{*} = 0\), \({z_{\infty }},z_{\infty }^{*} \in ( {0, + \infty } )\). Then when \(\lambda \in ( {{Q_{1}}, + \infty } )\) and \(\mu \in ( {{Q_{3}}, + \infty } )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.5
Let \({z_{0}},z_{0}^{*} \in ( {0, + \infty } )\), \({z_{\infty }} = + \infty \), and \(z_{\infty }^{*} = + \infty \). Then when \(\lambda \in ( {0,{Q_{2}}} )\), \(\mu \in ( {0,{Q_{4}}} )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.6
Let \({z_{0}} \in ( {0, + \infty } )\), \(z_{0}^{*} = 0\), \(z_{\infty }^{*} = + \infty \), and \({z_{\infty }} = + \infty \). Then when \(\lambda \in ( {0,{Q_{2}}} )\), \(\mu \in ( {0, + \infty } )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.7
Let \({z_{0}}=0\), \(z_{0}^{*}\in ( {0, + \infty } )\), \(z_{\infty }^{*} = + \infty \), and \({z_{\infty }} = + \infty \). Then when \(\lambda \in ( {0, +\infty } )\), \(\mu \in ( {0, {Q_{4}}} )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.8
Let \({z_{0}} = z_{0}^{*} = 0\), \({z_{\infty }} = + \infty \), and \(z_{\infty }^{*} = + \infty \). Then when \(\lambda \in ( {0, + \infty } )\) and \(\mu \in ( {0, + \infty } )\) hold, we get that system (1.1) has at least one positive solution.
For convenience, we give the other denotations as follows:
$$\begin{aligned}& {\overline{z} _{0}} = \lim_{ ( {u,v} ) \to ( {{0^{+} },{0^{+} }} )} \inf_{t \in [ {\frac{1}{4},\frac{3}{4}} ]} \frac{{{f_{1}} ( {t,u,v} )}}{{u + v}},\qquad \overline{z} _{0}^{*} = \lim_{ ( {u,v} ) \to ( {{0^{+} },{0^{+} }} )} \inf _{t \in [ {\frac{1}{4},\frac{3}{4}} ]} \frac{{{f_{2}} ( {t,u,v} )}}{{u + v}}, \end{aligned}$$
(3.11)
$$\begin{aligned}& {\overline{z} _{\infty }} = \lim _{ ( {u,v} ) \to ( { + \infty , + \infty } )} \sup_{t \in [ {0,1} ]} \frac{{{f_{1}} ( {t,u,v} )}}{{u + v}}, \qquad \overline{z} _{\infty }^{*} = \lim_{ ( {u,v} ) \to ( { + \infty , + \infty } )} \sup_{t \in [ {0,1} ]} \frac{{{f_{2}} ( {t,u,v} )}}{{u + v}}. \end{aligned}$$
(3.12)
Theorem 3.9
Let \({\overline{z} _{0}} ,\overline{z} _{0}^{*},{\overline{z} _{\infty }} , \overline{z} _{\infty }^{*} \in ( 0, + \infty )\), \({ \overline{Q}}_{1}< {\overline{Q}}_{2}\), \({\overline{Q}}_{ {3}} <{\overline{Q}}_{ {4}}\). Then when \(\lambda \in ( {\overline{Q}}_{1}, {\overline{Q}}_{2} )\), \(\mu \in ( { \overline{Q}}_{3}, {\overline{Q}}_{4})\) hold, we have that system (1.1) has at least one positive solution, where
$$\overline{Q}_{1} =\frac{1}{{2{{\bar{z}}_{0} }{P_{3}}}},\qquad \overline{Q}_{2} =\frac{1}{{2{{\overline{z} }_{\infty }}{P_{1}}}}, \qquad \overline{Q}_{3} = \frac{1}{{2\overline{z} _{0} ^{*}{P_{4}}}},\qquad \overline{Q}_{4} =\frac{1}{{2\overline{z} _{\infty }^{*}{P_{2}}}}. $$
Proof
Since \(\lambda \in ( \overline{Q}_{1} ,\overline{Q}_{2} )\), \(\mu \in ( \overline{Q}_{3} ,\overline{Q}_{4} )\), so we can choose \(\varepsilon > 0\) such that
$$ \frac{1}{{2 ( {{{\overline{z} }_{0} } - \varepsilon } ){P_{3}}}} \le \lambda \le \frac{1}{{2 ( {{{\overline{z} }_{\infty }} + \varepsilon } ){P_{1}}}}, \qquad \frac{1}{{2 ( {\overline{z} _{0} ^{*} - \varepsilon } ){P_{4}}}} \le \mu \le \frac{1}{{2 ( {\overline{z} _{\infty }^{*} + \varepsilon } ){P_{2}}}}. $$
(3.13)
By (3.11)–(3.13), for the above \(\varepsilon >0\), there exists a constant \({R_{3}} > 0\) such that
$$\begin{aligned}& {{f_{1}} ( {t,u,v} ) \geq ( {{{\overline{z} }_{0}} - \varepsilon } ) ( {u + v} ),\quad 0 < u + v \le {R_{3}},t \in \biggl[ { \frac{1}{4},\frac{3}{4}} \biggr],} \\& {{f_{2}} ( {t,u,v} ) \geq \bigl( {\overline{z} _{0}^{*} - \varepsilon } \bigr) ( {u + v} ),\quad 0 < u + v \le {R_{3}},t \in \biggl[ {\frac{1}{4},\frac{3}{4}} \biggr].} \end{aligned}$$
Set \({\Omega _{3}} = \{ { ( {u,v} ) \in X |\ {{ \Vert { ( {u,v} )} \Vert }_{X}} < {R_{3}}} \} \). From Lemma 2.4 and (3.1), for any \(( {u,v} ) \in P\bigcap \partial {\Omega _{3}}\), we have
$$\begin{aligned} {L_{1}} ( {u,v} ) \biggl(\frac{1}{4} \biggr) &= \lambda \int _{0}^{1} {{G_{1}} \biggl( { \frac{1}{4},s} \biggr){f_{1}} \bigl( {s,u ( s ),v ( s )} \bigr)} \,ds \\ & \ge \frac{{\lambda {N_{1}}}}{{\Gamma ( {{\theta _{1}}} )}} \int _{\frac{1}{4}}^{\frac{3}{4}} {{{ ( {1 - s} )}^{{ \theta _{1}} - 1}} ( {{{\overline{z} }_{0}} - \epsilon } ) \bigl( {u ( s ) + v ( s )} \bigr)\,ds} \\ &\ge \frac{{\lambda {N_{1}}K ( {{{\overline{z} }_{0}} - \epsilon } )}}{{\Gamma ( {{\theta _{1}}} )}} \int _{\frac{1}{4}}^{\frac{3}{4}} {{{ ( {1- s} )}^{{ \theta _{1}} - 1}}\,ds} \bigl( { \Vert u \Vert + \Vert v \Vert } \bigr) \\ &= \lambda ( {{{ \overline{z} }_{0}} - \epsilon } ){P_{3}} \bigl( { \Vert u \Vert + \Vert v \Vert } \bigr) \\ & \ge \frac{1}{2}{{ \bigl\Vert { (u,v )} \bigr\Vert }_{X}}, \end{aligned}$$
and
$$\begin{aligned} {L_{{2}}} ( {u,v} ) \biggl( \frac{1}{4} \biggr) &= \mu \int _{0}^{1} {{G_{{2}}} \biggl( { \frac{1}{4},s} \biggr){f_{{2}}} \bigl( {s,u ( s ),v ( s )} \bigr)} \,ds \\ & \ge \frac{{\mu {N_{2}}}}{{\Gamma ( {{\theta _{2}}} )}} \int _{ \frac{1}{4}}^{\frac{3}{4}} {{{ ( {1 - s} )}^{{\theta _{2}} - 1}} \bigl( {\overline{z} _{0}^{*} - \epsilon } \bigr) \bigl( {u ( s ) + v ( s )} \bigr)\,ds} \\ & \ge \frac{{\mu {N_{2}}K ( {\overline{z} _{0}^{*} - \epsilon } )}}{{\Gamma ( {{\theta _{2}}} )}} \int _{\frac{1}{4}}^{\frac{3}{4}} {{{ ( {1 - s} )}^{{ \theta _{2}} - 1}}\,ds} \bigl( { \Vert u \Vert + \Vert v \Vert } \bigr) \\ & = \mu \bigl( { \overline{z} _{0}^{*} - \epsilon } \bigr){P_{4}} \bigl( { \Vert u \Vert + \Vert v \Vert } \bigr) \\ & \ge \frac{1}{2}{{ \bigl\Vert { (u,v )} \bigr\Vert }_{X}}. \end{aligned}$$
Then we have
$$ \bigl\Vert {L ( {u,v} )} \bigr\Vert = \bigl\Vert {{L_{1}} ( {u,v} )} \bigr\Vert + \bigl\Vert {{L_{{2}}} ( {u,v} )} \bigr\Vert \ge { \bigl\Vert { (u,v )} \bigr\Vert _{X}}, \quad \forall ( {u,v} ) \in P\cap \partial {\Omega _{3}}. $$
(3.14)
Let \(\widetilde{f}_{1}(t,w)=\max_{0\leq u+v\leq w}f_{1}(t,u,v)\), \(\widetilde{f}_{2}(t,w)=\max_{0\leq u+v\leq w}f_{2}(t,u,v)\). Obviously, \(\widetilde{f}_{1}, \widetilde{f}_{2}: [0, 1]\times [0,+\infty ) \rightarrow [0,+\infty )\), \(f_{1}(t,u,v)\leq \widetilde{f}_{1}(t,w)\), \(f_{2}(t,u,v) \leq \widetilde{f}_{2}(t,w)\), \(u\geq 0\), \(v\geq 0\), \(u+v\leq w\), \(t\in [0,1]\); \(\widetilde{f}_{1}(t,w)\) and \(\widetilde{f}_{2}(t,w)\) are nondecreasing on w, and
$$\begin{aligned}& \limsup_{w\rightarrow +\infty }\max_{t\in [0,1]} \frac{\widetilde{f}_{1}(t,w)}{w}\leq \overline{z}_{\infty }, \end{aligned}$$
(3.15)
$$\begin{aligned}& \limsup_{w\rightarrow +\infty }\max_{t\in [0,1]} \frac{\widetilde{f}_{2}(t,w)}{w}\leq \overline{z}^{*}_{\infty }. \end{aligned}$$
(3.16)
By (3.15) and (3.16), there exist \(\varepsilon >0\) and \({\overline{R} _{4}}>0\) such that
$$ \widetilde{f}_{1}(t,w)\leq (\overline{z}_{\infty }+ \epsilon )w,\qquad \widetilde{f}_{2}(t,w)\leq \bigl( \overline{z}^{*}_{\infty }+\epsilon \bigr)w,\quad t \in [ {0,1} ],w \ge {\overline{R} _{4}}. $$
(3.17)
Let \(\Omega _{4}=\{(u,v)\in X|\ \|(u,v)\|_{X}< R_{4}\}\), where \({R_{4}} = \max \{ {2{R_{3}},3{{\overline{R} }_{4}}} \} \). For any \((u,v)\in P\cap \partial \Omega _{4}\), we have \(f_{1}(t,u,v)\leq \widetilde{f}_{1}(t,\|(u,v)\|_{X})\), \(f_{2}(t,u,v)\leq \widetilde{f}_{2}(t,\|(u,v)\|_{X})\). So, by (3.13) and (3.17), we get that
$$\begin{aligned} {L_{1}} ( {u,v} ) ( t ) &= \lambda \int _{0}^{1} {{G_{1}} ( {t,s} ){f_{1}} \bigl( {s,u ( s ),v ( s )} \bigr)} \,ds \\ & \le \frac{\lambda }{\Gamma (\theta _{1})(1- B_{1})} \int _{0}^{1}(1 - s)^{ \theta _{1} - 1}( \overline{z}_{\infty }+\epsilon ) \bigl( \bigl\Vert (u,v) \bigr\Vert _{X}\bigr)\,ds \\ & =\lambda (\overline{z}_{\infty }+ \epsilon )P_{1}\bigl( \bigl\Vert (u,v) \bigr\Vert _{X}\bigr) \\ & \le \frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}, \end{aligned}$$
and
$$\begin{aligned} {L_{2}} ( {u,v} ) ( t ) &= \mu \int _{0}^{1} {{G_{2}} ( {t,s} ){f_{2}} \bigl( {s,u ( s ),v ( s )} \bigr)} \,ds \\ & \le \frac{\mu }{\Gamma (\theta _{2})(1- B_{2})} \int _{0}^{1}(1 - s)^{ \theta _{2} - 1}\bigl( \overline{z}^{*}_{\infty }+\epsilon \bigr) \bigl( \bigl\Vert (u,v) \bigr\Vert _{X}\bigr)\,ds \\ & =\mu \bigl(\overline{z}^{*}_{\infty }+ \epsilon \bigr)P_{2}\bigl( \bigl\Vert (u,v) \bigr\Vert _{X} \bigr) \\ & \le \frac{1}{2} \bigl\Vert (u,v) \bigr\Vert _{X}. \end{aligned}$$
Then we get
$$ \bigl\Vert {L ( {u,v} )} \bigr\Vert = \bigl\Vert {{L_{1}} ( {u,v} )} \bigr\Vert + \bigl\Vert {{L_{{2}}} ( {u,v} )} \bigr\Vert \le { \bigl\Vert { (u,v )} \bigr\Vert _{X}}, \quad \forall ( {u,v} ) \in P\cap \partial {\Omega _{4}}. $$
(3.18)
By virtue of (3.14)(3.18) and Lemma 2.5, we know that L has at least a fixed point \((u,v)\in P\cap (\overline{\Omega }_{4}\backslash \Omega _{3})\). Therefore, \((u,v)\) is one positive solution of system (1.1). □
Since the proofs of the following theorems are similar to Theorem 3.9, we only give the results as follows.
Theorem 3.10
Let \({\overline{z} _{0}}, \overline{z} _{0}^{*}, {\overline{z} _{\infty }}\in (0,+ \infty )\), \(\overline{z} _{\infty }^{*} = 0\), \(\overline{Q}_{1}<\overline{Q}_{2}\). Then when \(\lambda \in (\overline{Q}_{1},\overline{Q}_{2} )\), \(\mu \in ( \overline{Q}_{3}, +\infty )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.11
Let \({\overline{z} _{0}}, \overline{z} _{0}^{*}, \overline{z} _{\infty }^{*} \in ( 0, + \infty )\), \({\overline{z} _{\infty }} = 0, {\overline{Q} _{3}} < {\overline{Q} _{4}}\). Then when \(\lambda \in ( {{{\overline{Q} }_{1}}, + \infty } )\), \(\mu \in ( {{{\overline{Q} }_{3}},{{\overline{Q} }_{4}}} )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.12
Let \({\overline{z} _{0}},\overline{z} _{0}^{*} \in ( 0, + \infty )\), \({\overline{z} _{\infty }}=\overline{z} _{\infty }^{*} = 0\). Then when \(\lambda \in ( {{{\overline{Q} }_{1}}, + \infty } )\), \(\mu \in ( {{{\overline{Q} }_{3}}, + \infty } )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.13
Let \({\overline{z} _{\infty }},\overline{z} _{\infty }^{*} \in ( 0, + \infty )\), \({\overline{z} _{0}} = + \infty \), and \(\overline{z} _{0}^{*}=+ \infty \). Then when \(\lambda \in ( {0,{{\overline{Q} }_{2}}} )\), \(\mu \in ( {0,{{\overline{Q} }_{4}}} )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.14
Let \({{\bar{z}}_{0}} = + \infty \), \({{\bar{z}}_{\infty }}\in ( 0, + \infty ), \overline{z} _{0} ^{*} = {+}\infty \), and \(\overline{z}_{\infty }^{*} = 0\). Then when \(\lambda \in (0,\overline{Q}_{2})\), \(\mu \in (0,+\infty )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.15
Let \(\overline{z} _{\infty }^{*} \in ( 0, + \infty )\), \({\overline{z} _{\infty }} = 0\), \({\overline{z} _{0}} = +\infty \), and \(\overline{z} _{0}^{*}=+\infty \). Then when \(\lambda \in ( {0, + \infty } )\), \(\mu \in ( {0,{{ \overline{Q} }_{4}}} )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.16
Let \({\overline{z} _{\infty }} = \overline{z} _{\infty }^{*} = 0\), \({\overline{z} _{0}} = +\infty \), and \(\overline{z} _{0}^{*} = +\infty \). Then when \(\lambda \in ( {0, + \infty } )\), \(\mu \in ( {0, + \infty } )\) hold, we get that system (1.1) has at least one positive solution.