- Research
- Open access
- Published:
Existence of positive solutions for a system of nonlinear Caputo type fractional differential equations with two parameters
Advances in Difference Equations volume 2021, Article number: 497 (2021)
Abstract
The main purpose of this paper is to prove the existence of positive solutions for a system of nonlinear Caputo-type fractional differential equations with two parameters. By using the Guo–Krasnosel’skii fixed point theorem, some existence theorems of positive solutions are obtained in terms of different values of parameters. Two examples are given to illustrate the main results.
1 Introduction
Fractional-order calculus, which is an important branch of mathematics, was introduced in 1695. Since fractional-order calculus can characterize many non-classical phenomena in natural sciences and engineering, it has been applied to various fields in recent years. At the same time, boundary value problems of fractional differential equations have appeared with applications of fractional-order calculus; so far, there have been many literature works about boundary value problems of fractional differential equations.
For some recent studies on fractional differential equations, we can refer to [1–27]. For example, in [10], the authors used the Guo–Krasnosel’skii fixed point theorem and the Leggett–Williams fixed point theorem to obtain the existence of positive solutions to the nonlinear Caputo fractional q-difference equation with integral boundary conditions. In [12], the authors investigated the following boundary value problem of Caputo-type fractional differential equation subject to Riemann–Stieltjes integral boundary conditions:
where \({{}^{c}D^{\theta }}\) is the Caputo fractional derivative, \({\theta \in ( {2,3} )}\), and \(f: [ {0,1} ] \times [ {0, + \infty } ) \to [ {0, + \infty } )\) is continuous, and \(\mu >0\) is a parameter. By using the Guo–Krasnosel’skii fixed point theorem, the authors obtained some new results about the existence and non-existence of positive solutions for the above equation.
In [18], the authors focused on the following boundary value problem:
where \(2< q \leq 3\), \(0<\sigma \leq 1\), \(\alpha , \gamma , \delta \geq 0\) and \(\beta >0\) satisfying
The method they used is the Guo-Krasnoselskii fixed point theorem, and the existence theorems of positive solutions for the above equation were obtained.
In [23], the authors investigated a coupled system of Caputo fractional differential equations with coupled non-conjugate Riemann–Stieltjes type integro-multipoint boundary conditions. They obtained some new theorems by using the Leray–Schauder nonlinear alternative, the Krasnosel’skii fixed point theorem, and Banach’s contraction mapping principle.
In [24], the authors studied the following nonlinear Caputo-type fractional differential equations with integral boundary conditions:
where \(n<\alpha \), \(\beta < n + 1\), \(n \ge 2\), \(n \in N\), \(0 < \lambda < n\); \(f, g \in C ( { [ {0,1} ] \times R \times R, R} )\). In this paper, by using Schauder’s fixed point theorem and Banach’s fixed point theorem, sufficient conditions were obtained for the existence and uniqueness of positive solutions of the above coupled system.
In [25], the authors considered the following fractional differential equations:
where \(f_{i}:[0,1]\times [0,+\infty )\times [0,+\infty )\rightarrow [0,+ \infty )\) is continuous; \(\theta _{i}\in (2,3)\); \(A_{i}\) is a bounded variation function with positive measure \(B_{i}=\int ^{1}_{0}t \,dA_{i}(t)<1\), \(i=1,2\). By means of the fixed point index theory, the authors proved that the above system has at least two positive solutions.
In [26, 27], the authors used the Guo–Krasnosel’skii fixed point theorem to investigate the existence of positive solutions for systems of fractional differential equations nonlocal boundary value problems with two parameters, and the existence of positive solutions were obtained. In [26], the fractional derivative is the standard Riemann–Liouville derivative, and in [27], the fractional derivative is a conformable fractional derivative.
Inspired by [2–27], in this paper, we study the existence of positive solutions for the following system of fractional differential equations:
where \({{}^{c}D^{{\theta _{i}}}}\) is the Caputo fractional derivative; \({f_{i}}: [ {0,1} ] \times [ {0, + \infty } ) \times [ {0, + \infty } ) \to [ {0, + \infty } )\) is continuous; \({\theta _{i}} \in ( {2,3} )\); \({{A_{i}}}\) is a bounded variation function with positive measure \({B_{i}} = \int _{0}^{1} {t\,d{A_{i}} ( t )} < 1\), \(i = 1,2\); λ and μ are positive parameters. By studying system (1.1), we improve and generalize paper [12]. Compared with literatures [26, 27], the definition of fractional derivative is different from those of [26, 27]. The main purpose of this paper is to demonstrate the existence of positive solutions about system (1.1). By the Guo–Krasnosel’skii fixed point theorem, we obtain some existence theorems of positive solutions under the conditions of various values of parameters. To illustrate the theoretical results, two examples are given in the last section of the paper.
2 Preliminaries
In the following, some concepts and lemmas of Caputo differential equations are presented, as well as some auxiliary results for proving the main theorems.
Definition 2.1
(see [1])
For a function \(x \in {C^{n}} [ {0, + \infty } )\), the Caputo fractional derivative of order \(\theta > 0\) is defined as
Lemma 2.1
(see [1])
Let \(\theta > 0\). If we assume \(x \in C ( {0,1} )\bigcap L ( {0,1} )\), then the fractional differential equation
has the general solution \(x ( t ) = {C_{0}} + {C_{1}}t + \cdots + {C_{n - 1}}t^{n-1}\), \({C_{i}} \in R\), \(i = 0,1,\ldots , n- 1\).
Lemma 2.2
(see [1])
Suppose that \(x \in C ( {0,1} )\bigcap L ( {0,1} )\) with a fractional derivative of order θ that belongs to \(C ( {0,1} )\bigcap L ( {0,1} )\). Then \(I^{\theta }{}^{c}D^{\theta }x ( t ) = x ( t ) + {C_{0}} + {C_{1}}t + \cdots + {C_{n - 1}}t^{n-1}\), for \({C_{i}} \in R\), \(i = 0,1,\ldots , n - 1\).
Lemma 2.3
(see [12])
Let \(x \in C [ {0,1} ]\) and \({\theta _{1}},{\theta _{2}} \in ( {2,3} )\). Then p is a solution of the linear Caputo fractional differential equation
if and only if p is the solution of the integral equation
where
and \({B_{i}} = \int _{0}^{1} {t\,d} {A_{i}} ( t ) < 1\), \(i = 1,2\).
Lemma 2.4
(see [12])
Green’s function \({G_{i}} ( {t,s} )\) (\({i = 1,2} \)) defined by (2.1) has the following properties:
-
(i)
\(\Gamma (\theta _{i})G_{i}(t,s)\leq \frac{1}{1-B_{i}}(1-s)^{ \theta _{i}-1}\) for \(t,\ s\in [0,1]\);
-
(ii)
\(\Gamma (\theta _{i})G_{i}(t,s)\geq N_{i}(1-s)^{ \theta _{i}-1}\) for \(t\in [\frac{1}{4},\frac{3}{4}]\), \(s\in [0,1]\),
where
Lemma 2.5
(see [28])
Let P be a cone of the Banach space X and \({\Omega _{1}}\) and \({\Omega _{2}}\) be two bounded open sets in X with \(\theta \subset {\Omega _{1}}\), \({\overline{\Omega }_{1}} \subset {\Omega _{2}}\). Let \(A:P\cap { ( {{{\overline{\Omega }}_{2}}\backslash {\Omega _{1}}} )} \to P\) be a completely continuous operator. If one of the following two conditions holds:
-
(1)
\(\Vert {Ap} \Vert \le \Vert p \Vert \) for all \(p \in P\cap \partial {\Omega _{1}}\), \(\Vert {Ap} \Vert \ge \Vert p \Vert \) for all \(p \in P\cap \partial {\Omega _{2}}\);
-
(2)
\(\Vert {Ap} \Vert \ge \Vert p \Vert \) for all \(p \in P\cap \partial {\Omega _{1}}\), \(\Vert {Ap} \Vert \le \Vert p \Vert \) for all \(p \in P\cap \partial {\Omega _{2}}\),
then A has at least one fixed point in \(P\cap { ( {{{\overline{\Omega }}_{2}}\backslash {\Omega _{1}}} )} \).
3 Main results
Let \(X = C [ {0,1} ] \times C [ {0,1} ]\). Define the norm \({ \Vert { ( {x,y} )} \Vert _{X}} = \Vert x \Vert + \Vert y \Vert \) on X,where \(\Vert x \Vert = \max_{0 \le t \le 1} \vert {x ( t )} \vert \), then X is a Banach space.
We define the cone
where
\({{N_{1}},{N_{2}}}\) are defined by (2.2).
We define the operators \({L_{1}}\), \({L_{2}}\), and L as follows:
where \({G_{i}} ( {t,s} ) ( {i = 1,2} )\) is defined by (2.1).
Obviously, fixed points of the operator L in P are positive solutions of system (1.1).
Lemma 3.1
\(L:P \to P\) is completely continuous.
Proof
We easily know that \({L_{1}} ( {u,v} ) ( t ) \ge 0\), \({L_{2}} ( {u,v} ) ( t ) \ge 0\) for \(( {u,v} ) \in P\), \(t \in [ {0,1} ]\).
Obviously, by Lemma 2.4, for \(( {u,v} ) \in P\), when \(t \in [ {\frac{1}{4},\frac{3}{4}} ]\), we have
Similarly, we get
By (3.4), we get \(L (P ) \subset P\). From the paper [12], we know that \({L_{1}}\), \({L_{2}}\) are completely continuous. So L is completely continuous. The proof is completed. □
For convenience, we first list the following denotations:
Theorem 3.1
Let \({z_{0}},z_{0}^{*},{z_{\infty }},z_{\infty }^{*} \in ( {0, + \infty } )\), \({Q_{1}} < {Q_{2}}\), \({Q_{3}} < {Q_{4}}\). Then when \(\lambda \in ( {{Q_{1}},{Q_{2}}} )\) and \(\mu \in ( {{Q_{3}},{Q_{4}}} )\) hold, we get that system (1.1) has at least one positive solution, where
Proof
It is easy to see that there exists \(\varepsilon >0\) such that, for \(\lambda \in ( {{Q_{1}},{Q_{2}}} )\) and \(\mu \in ( {{Q_{3}},{Q_{4}}} )\), we have
By (3.5), for the above \(\varepsilon >0\), there exists a constant \({R_{1}} > 0\) such that
Let \({\Omega _{1}} = \{ { ( {u,v} ) \in X| \ {{ \Vert { ( {u,v} )} \Vert }_{X}} < {R_{1}}} \} \). For any \(( {u,v} ) \in P\bigcap \partial {\Omega _{1}}\), by Lemma 2.4 and (3.1), we have
Also, we get
So
From (3.6), we know that there exist \(\varepsilon > 0\) and \({\overline{R} _{2}} > 0\) such that
Let \({\Omega _{2}} = \{ { ( {u,v} ) \in X|\ {{ \Vert { (u,v )} \Vert }_{X}} < {R_{2}}} \} \), where \({R_{2}} = \max \{ {2{R_{1}},\frac{{{{\overline{R} }_{2}}}}{{K}}} \} \). From (3.1) and Lemma 2.4, for any \(( {u,v} ) \in P\cap \partial {\Omega _{2}}\), we have
and
So
By virtue of (3.9), (3.10), and Lemma 2.5, we know that L has at least a fixed point \((u,v)\in P\cap (\overline{\Omega }_{2}\backslash \Omega _{1})\). Therefore, \((u,v)\) is one positive solution of system (1.1). □
Since the proofs of the following theorems are similar to Theorem 3.1, we only give the results as follows.
Theorem 3.2
Let \({z_{0}} = 0\), \(z_{0}^{*},{z_{\infty }},z_{\infty }^{*} \in ( {0, + \infty } )\), \({Q_{3}} < {Q_{4}}\). Then when \(\lambda \in ( {{Q_{1}}, + \infty } )\) and \(\mu \in ( {{Q_{3}},{Q_{4}}} )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.3
Let \(z_{0}^{*} = 0\), \({z_{0}},{z_{\infty }},z_{\infty }^{*} \in ( {0, + \infty } )\), \({Q_{1}} < {Q_{2}}\). Then when \(\lambda \in ( {{Q_{1}},{Q_{2}}} )\) and \(\mu \in ( {{Q_{3}}, + \infty } )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.4
Let \({z_{0}} = 0\), \(z_{0}^{*} = 0\), \({z_{\infty }},z_{\infty }^{*} \in ( {0, + \infty } )\). Then when \(\lambda \in ( {{Q_{1}}, + \infty } )\) and \(\mu \in ( {{Q_{3}}, + \infty } )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.5
Let \({z_{0}},z_{0}^{*} \in ( {0, + \infty } )\), \({z_{\infty }} = + \infty \), and \(z_{\infty }^{*} = + \infty \). Then when \(\lambda \in ( {0,{Q_{2}}} )\), \(\mu \in ( {0,{Q_{4}}} )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.6
Let \({z_{0}} \in ( {0, + \infty } )\), \(z_{0}^{*} = 0\), \(z_{\infty }^{*} = + \infty \), and \({z_{\infty }} = + \infty \). Then when \(\lambda \in ( {0,{Q_{2}}} )\), \(\mu \in ( {0, + \infty } )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.7
Let \({z_{0}}=0\), \(z_{0}^{*}\in ( {0, + \infty } )\), \(z_{\infty }^{*} = + \infty \), and \({z_{\infty }} = + \infty \). Then when \(\lambda \in ( {0, +\infty } )\), \(\mu \in ( {0, {Q_{4}}} )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.8
Let \({z_{0}} = z_{0}^{*} = 0\), \({z_{\infty }} = + \infty \), and \(z_{\infty }^{*} = + \infty \). Then when \(\lambda \in ( {0, + \infty } )\) and \(\mu \in ( {0, + \infty } )\) hold, we get that system (1.1) has at least one positive solution.
For convenience, we give the other denotations as follows:
Theorem 3.9
Let \({\overline{z} _{0}} ,\overline{z} _{0}^{*},{\overline{z} _{\infty }} , \overline{z} _{\infty }^{*} \in ( 0, + \infty )\), \({ \overline{Q}}_{1}< {\overline{Q}}_{2}\), \({\overline{Q}}_{ {3}} <{\overline{Q}}_{ {4}}\). Then when \(\lambda \in ( {\overline{Q}}_{1}, {\overline{Q}}_{2} )\), \(\mu \in ( { \overline{Q}}_{3}, {\overline{Q}}_{4})\) hold, we have that system (1.1) has at least one positive solution, where
Proof
Since \(\lambda \in ( \overline{Q}_{1} ,\overline{Q}_{2} )\), \(\mu \in ( \overline{Q}_{3} ,\overline{Q}_{4} )\), so we can choose \(\varepsilon > 0\) such that
By (3.11)–(3.13), for the above \(\varepsilon >0\), there exists a constant \({R_{3}} > 0\) such that
Set \({\Omega _{3}} = \{ { ( {u,v} ) \in X |\ {{ \Vert { ( {u,v} )} \Vert }_{X}} < {R_{3}}} \} \). From Lemma 2.4 and (3.1), for any \(( {u,v} ) \in P\bigcap \partial {\Omega _{3}}\), we have
and
Then we have
Let \(\widetilde{f}_{1}(t,w)=\max_{0\leq u+v\leq w}f_{1}(t,u,v)\), \(\widetilde{f}_{2}(t,w)=\max_{0\leq u+v\leq w}f_{2}(t,u,v)\). Obviously, \(\widetilde{f}_{1}, \widetilde{f}_{2}: [0, 1]\times [0,+\infty ) \rightarrow [0,+\infty )\), \(f_{1}(t,u,v)\leq \widetilde{f}_{1}(t,w)\), \(f_{2}(t,u,v) \leq \widetilde{f}_{2}(t,w)\), \(u\geq 0\), \(v\geq 0\), \(u+v\leq w\), \(t\in [0,1]\); \(\widetilde{f}_{1}(t,w)\) and \(\widetilde{f}_{2}(t,w)\) are nondecreasing on w, and
By (3.15) and (3.16), there exist \(\varepsilon >0\) and \({\overline{R} _{4}}>0\) such that
Let \(\Omega _{4}=\{(u,v)\in X|\ \|(u,v)\|_{X}< R_{4}\}\), where \({R_{4}} = \max \{ {2{R_{3}},3{{\overline{R} }_{4}}} \} \). For any \((u,v)\in P\cap \partial \Omega _{4}\), we have \(f_{1}(t,u,v)\leq \widetilde{f}_{1}(t,\|(u,v)\|_{X})\), \(f_{2}(t,u,v)\leq \widetilde{f}_{2}(t,\|(u,v)\|_{X})\). So, by (3.13) and (3.17), we get that
and
Then we get
By virtue of (3.14)(3.18) and Lemma 2.5, we know that L has at least a fixed point \((u,v)\in P\cap (\overline{\Omega }_{4}\backslash \Omega _{3})\). Therefore, \((u,v)\) is one positive solution of system (1.1). □
Since the proofs of the following theorems are similar to Theorem 3.9, we only give the results as follows.
Theorem 3.10
Let \({\overline{z} _{0}}, \overline{z} _{0}^{*}, {\overline{z} _{\infty }}\in (0,+ \infty )\), \(\overline{z} _{\infty }^{*} = 0\), \(\overline{Q}_{1}<\overline{Q}_{2}\). Then when \(\lambda \in (\overline{Q}_{1},\overline{Q}_{2} )\), \(\mu \in ( \overline{Q}_{3}, +\infty )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.11
Let \({\overline{z} _{0}}, \overline{z} _{0}^{*}, \overline{z} _{\infty }^{*} \in ( 0, + \infty )\), \({\overline{z} _{\infty }} = 0, {\overline{Q} _{3}} < {\overline{Q} _{4}}\). Then when \(\lambda \in ( {{{\overline{Q} }_{1}}, + \infty } )\), \(\mu \in ( {{{\overline{Q} }_{3}},{{\overline{Q} }_{4}}} )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.12
Let \({\overline{z} _{0}},\overline{z} _{0}^{*} \in ( 0, + \infty )\), \({\overline{z} _{\infty }}=\overline{z} _{\infty }^{*} = 0\). Then when \(\lambda \in ( {{{\overline{Q} }_{1}}, + \infty } )\), \(\mu \in ( {{{\overline{Q} }_{3}}, + \infty } )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.13
Let \({\overline{z} _{\infty }},\overline{z} _{\infty }^{*} \in ( 0, + \infty )\), \({\overline{z} _{0}} = + \infty \), and \(\overline{z} _{0}^{*}=+ \infty \). Then when \(\lambda \in ( {0,{{\overline{Q} }_{2}}} )\), \(\mu \in ( {0,{{\overline{Q} }_{4}}} )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.14
Let \({{\bar{z}}_{0}} = + \infty \), \({{\bar{z}}_{\infty }}\in ( 0, + \infty ), \overline{z} _{0} ^{*} = {+}\infty \), and \(\overline{z}_{\infty }^{*} = 0\). Then when \(\lambda \in (0,\overline{Q}_{2})\), \(\mu \in (0,+\infty )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.15
Let \(\overline{z} _{\infty }^{*} \in ( 0, + \infty )\), \({\overline{z} _{\infty }} = 0\), \({\overline{z} _{0}} = +\infty \), and \(\overline{z} _{0}^{*}=+\infty \). Then when \(\lambda \in ( {0, + \infty } )\), \(\mu \in ( {0,{{ \overline{Q} }_{4}}} )\) hold, we get that system (1.1) has at least one positive solution.
Theorem 3.16
Let \({\overline{z} _{\infty }} = \overline{z} _{\infty }^{*} = 0\), \({\overline{z} _{0}} = +\infty \), and \(\overline{z} _{0}^{*} = +\infty \). Then when \(\lambda \in ( {0, + \infty } )\), \(\mu \in ( {0, + \infty } )\) hold, we get that system (1.1) has at least one positive solution.
4 Applications
Example 4.1
Consider the following Caputo-type fractional system:
Take
where \({\theta _{1}} = {\theta _{2}} = \frac{5}{2}\), \({A_{1}} ( t ) = {A_{2}} ( t ) = \frac{1}{2}t\), \({B_{1}} = {B_{2}} = \frac{1}{4}\).
We can get \({P_{1}} = {P_{2}} = \frac{{32}}{{45\sqrt{\pi }}}\), \({P_{3}} = {P_{4}} = \frac{{9 ( {9\sqrt{3} - 1} )}}{{327680\sqrt{\pi }}}\). Obviously, we can infer that
Then, for each \(\lambda \in ( {0,\frac{{45\sqrt{\pi }}}{8}} )\) and \(\mu \in ( {0, + \infty } )\), from Theorem 3.6, system (4.1) has at least a positive solution.
Example 4.2
Consider the following Caputo-type fractional system:
Take
where \({\theta _{1}} = {\theta _{2}} = \frac{5}{2}\), \({A_{1}} ( t ) = {A_{2}} ( t ) = \frac{1}{2}t\), \({B_{1}} = {B_{2}} = \frac{1}{4}\).
We can get \({P_{1}} = {P_{2}} = \frac{{32}}{{45\sqrt{\pi }}}\), \({P_{3}} = {P_{4}} = \frac{{9 ( {9\sqrt{3} - 1} )}}{{327680\sqrt{\pi }}}\), and
Then, for each \(\lambda \in ( {0, + \infty } )\) and \(\mu \in ( {0, + \infty } )\), from Theorem 3.16, system (4.2) has at least a positive solution.
Availability of data and materials
Not applicable.
References
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)
Lazreg, J.E., Abbas, S., Benchohra, M., Karapinar, E.: Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces. Open Math. 19, 363–372 (2021)
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652
Hao, X., Zhang, L., Liu, L.: Positive solutions of higher order fractional integral boundary value problem with a parameter. Nonlinear Anal., Model. Control 24(2), 210–223 (2019)
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115, Article ID 155 (2021)
Ali, K.B., Ghanmi, A., Kefi, K.: Existence of solutions for fractional differential equations with Dirichlet boundary conditions. Electron. J. Differ. Equ. 2016, 116 (2016)
Ghanmi, A., Kratou, M., Saoudi, K.: A multiplicity results for a singular problem involving a Riemann-Liouville fractional derivative. Filomat 32(2), 653–669 (2018)
Alqahtani, B., Aydi, H., Karapınar, E.: A solution for Volterra fractional integral equations by hybrid contractions. Mathematics 7(8), 694 (2019)
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.E.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021)
Yang, W.G., Qin, Y.P.: Positive solutions for nonlinear Caputo type fractional q-difference equations with integral boundary conditions. Mathematics 4, Article ID 63 (2016)
Hao, X., Sun, H., Liu, L., Wang, D.: Positive solutions for semipositone fractional integral boundary value problem on the half-line. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(4), 3055–3067 (2019)
Ma, W.J., Cui, Y.J.: The eigenvalue problem for Caputo type fractional differential equation with Riemann-Stieltjes integral boundary conditions. J. Funct. Spaces 2018, Article ID 2176809 (2018)
Jiang, J.Q., O’Regan, D., Xu, J.F., Fu, Z.Q.: Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions. J. Inequal. Appl. 2019, 204 (2019)
Guezane-Lakoud, A., Ashyralyev, A.: Positive solutions for a system of fractional differential equations with nonlocal integral boundary conditions. Differ. Equ. Dyn. Syst. 25, 519–526 (2017)
Hao, X.A.: Positive solution for singular fractional differential equations involving derivatives. Adv. Differ. Equ. 2016, 139 (2016)
Zhang, X.G., Liu, L.S., Wu, Y.H.: The uniqueness of positive solution for a singular fractional differential system involving derivatives. Commun. Nonlinear Sci. Numer. Simul. 18, 1400–1409 (2013)
Zhang, X., Zhong, Q.: Uniqueness of solution for higher-order fractional differential equations with conjugate type integral conditions. Fract. Calc. Appl. Anal. 20, 1471–1484 (2017)
Li, M., Sun, J.P., Zhao, Y.H.: Existence of positive solution for BVP of nonlinear fractional differential equation with integral boundary conditions. Adv. Differ. Equ. 2020, 177 (2020)
Chaieb, M., Dhifli, A., Zribi, M.: Positive solutions for systems of competitive fractional differential equations. Electron. J. Differ. Equ. 2016, 133 (2016)
Hao, X., Sun, H., Liu, L.: Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval. Math. Methods Appl. Sci. 41(16), 6984–6996 (2018)
Zhu, T.: Existence and uniqueness of positive solutions for fractional differential equations. Bound. Value Probl. 2019, 22 (2019)
Ghanmi, A., Horrigue, S.: Existence of positive solutions for a coupled system of nonlinear fractional differential equations. Ukr. Math. J. 71, 39–49 (2019)
Alsaedi, A., Ahmad, B., Alruwaily, Y.: On a coupled system of higher order nonlinear Caputo fractional differential equations with coupled Riemann-Stieltjes type integro-multipoint boundary conditions. Adv. Differ. Equ. 2019, 474 (2019)
Xue, Y.M., Su, Y., Su, Y.H.: Positive solutions of a coupled system of nonlinear Caputo type fractional differential equations. J. Jilin Univ. 55(4), 853–860 (2017)
Li, H.Y., Chen, Y.: Multiple positive solutions for a system of nonlinear Caputo-type fractional differential equations. J. Funct. Spaces 2020, Article ID 2437530 (2020)
Hao, X.A., Wang, H.Q., Liu, L.S., Cui, Y.J.: Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator. Bound. Value Probl. 2017, 182 (2017)
Li, H.Y., Zhang, J.T.: Positive solutions for a system of fractional differential equations with two parameters. J. Funct. Spaces 2018, Article ID 1462505 (2018)
Guo, D.J.: Nonlinear Functional Analysis. Shandong Sci. Tech. Press, Jinan (2001)
Funding
The project is supported by the National Natural Science Foundation of China (11801322) and Shandong Natural Science Foundation (ZR2018MA011).
Author information
Authors and Affiliations
Contributions
All authors contributed equally in writing this article. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Chen, Y., Li, H. Existence of positive solutions for a system of nonlinear Caputo type fractional differential equations with two parameters. Adv Differ Equ 2021, 497 (2021). https://doi.org/10.1186/s13662-021-03650-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-021-03650-z