- Research
- Open access
- Published:
Applications of some new Krasnoselskii-type fixed-point results for generalized expansive and equiexpansive mappings
Advances in Continuous and Discrete Models volume 2022, Article number: 30 (2022)
Abstract
We consider Ω as a subset of a Banach space W and Λ as a function of Ω into W. Let Ϝ be a function whose image values lie in W and domain is \(\Lambda (\Omega )\times \Omega \) or \(\Omega \times \Omega \). In this paper, we establish some fixed-point results for a generalized expansive and equiexpansive operator Ϝ such that \(\Omega \subseteq \digamma (\Lambda \omega ,\Omega )\) or \(\Omega \subseteq \digamma (\omega ,\Omega )\). We apply our results to acquire the solutions of fractional evolution equations and certain types of integral equations. We demonstrate our results with examples, and plot approximate and exact solutions with errors.
1 Introduction
Fixed-point theory has been playing a vital role to analyze the stability and existence of many linear and nonlinear problems over the last few decades. Two of the most celebrated results of fixed-point theory are the Banach contraction principle and Schauder’s fixed-point result. In addition to the beauty of the Banach contraction principle to determine the stability and uniqueness of the solution, Schauder’s result is still more applicable. Both the results have their own importance and domain. During the analysis of solutions of neutral and delayed differential equations, Krasnoselskii observed that, in most of the cases, the solutions of these equations might be expressed as a sum of contractive and compact operators. Therefore, in [10] Krasnoselskii generalized both results of Banach and Schauder, for finding the fixed points of the sum of contractive and compact operators. Huge implementations in the existence theory of differential and integral equations can be seen in the following monographs [9, 17, 29].
Fractional evolution equations can provide a unique way to analyze the well-posedness of many complex systems. Most differential systems with fractional derivatives provide useful tools for the representation of memory and inherited properties. The real physical systems of fractional order are always more applicable than the classical integer-order systems. Recently, the existence of many fractional-order controlled problems and fractional evolution differential equations have been studied, see [5, 13, 14, 22, 24]. Due to the involvement of contractive operators in Krasnoselskii’s result, the existence results cover a small class of physical problems. To overcome this issue, some new results are required involving other less restrictive conditions like expansive operators. In this regard, we describe a new class of generalized equiexpansive mappings, assume F is an implicit function of two variables with some conditions, we present many variants of Krasnoselskii’s fixed-point theorem.
Krasnoselskii, in 1958, combined the Schauder theorem and the Banach contraction principle to consider the fixed-point problem:
where Ω is a subset of Banach space W. Keeping the importance of this type of problems, many researchers have solved the operator equation \(\Lambda \omega +B\omega =\omega \) under different assumptions on Λ, B and Ω. These types of results can be seen in [2, 6, 7, 16, 18, 23, 25–28]. The Krasnoselskii theorem can be stated in the following way.
Theorem 1
([21])
Suppose that Ω is a nonempty closed convex subset of a Banach space W. Λ and B are mappings of Ω into W such that
-
(1)
\(\Lambda \omega +B\nu \in \Omega \) for all \(\omega ,\nu \in \Omega \);
-
(2)
Λ is compact and continuous;
-
(3)
B is a contraction.
Then, there is \(\omega \in \Omega \) such that \(\Lambda \omega +B\omega =\omega \).
Xiang and Yuan ([26], see also in [25]) proved the following theorem that is a variant of the Banach contraction principle.
Theorem 2
Let \(\Omega \subseteq W\) be a nonempty closed set, where W is a complete metric space and \(\Upsilon :\Omega \longrightarrow W\) is an expansive operator such that \(\Upsilon (\Omega )\supseteq \Omega \). Thus, there is a unique \(\omega \in \Omega \) such that \(\Upsilon \omega =\omega \).
In most fixed-point results the condition \(\Upsilon (\Omega )\subseteq \Omega \) is used, for example, in the Banach contraction principle, the Schauder fixed-point theorem and the Sadovskii fixed-point theorem. Xiang and Yuan [26] discussed and proved the fixed-point result for an expansive operator satisfying the reverse condition \(\Upsilon (\Omega )\supseteq \Omega \). They (in [26]) also proved the following fixed-point result that is a variant of the Krasnoselskii fixed-point theorem.
Theorem 3
Let \(\Omega \subseteq W\) be a nonempty closed and convex set, where W is a Banach space. Assume that \(\Lambda :\Omega \longrightarrow W\) and \(B:\Omega \longrightarrow W\) are mappings such that
-
(1)
Λ is continuous and \(\Lambda (\Omega )\subseteq C\), where C is a compact subset of W;
-
(2)
B is an expansive mapping;
-
(3)
\(\Omega \subseteq \upsilon +B(\Omega )\) for all \(\upsilon \in \Lambda (\Omega )\).
Thus, there is \(\omega \in \Omega \) such that \(\Lambda \omega +B\omega =\omega \).
In Theorem 1, \(\Lambda \omega +B\nu \in \Omega \) and B is a contraction, while in Theorem 3, \(\Omega \subseteq \upsilon +B(\Omega )\) and B is an expansive mapping. The single operator \(\Lambda \omega +B\nu \) combined from two operators Λ and B can be considered in the general form \(\digamma (\omega ,\nu )=\Lambda \omega +B\nu \). The fixed-point study for this type of operator Ϝ can be seen in [4, 8, 12, 15].
Let W be a Banach space and Ω be a subset of W. Suppose \(\digamma :\Omega \times \Omega \longrightarrow W\) or \(\digamma :\Lambda (\Omega )\times \Omega \longrightarrow W\). We, in this paper, study the fixed-point results of the equations of types \(\omega =\digamma (\Lambda \omega ,\omega )\) or \(\omega =\digamma (\omega ,\omega )\) by using generalized expansive and equiexpansive conditions on the operator Ϝ and such that \(\Omega \subseteq \digamma (\Lambda \omega ,\Omega )\) or \(\Omega \subseteq \digamma (\omega ,\Omega )\).
2 Main results
Definition 2.1
([26])
Let \((W,d_{W})\) be a metric space and Ω be a subset of W. A mapping ϒ of Ω into W is said to be expansive if there exists a constant \(h>1\) such that \(d_{W}(\Upsilon \omega ,\Upsilon \nu )\geq hd_{W}(\omega ,\nu )\).
Definition 2.2
Let \((W,d_{W})\) be a metric space and Ω be a subset of W. A mapping ϒ of Ω into W is said to be generalized expansive if
Below in Example 30, it is proved that a generalized expansive mapping may not be an expansive mapping. Also, note that every expansive mapping is one to one but every generalized expansive mapping may not be one to one. In the case of a generalized expansive mapping or an expansive mapping we need to have one to one mapping. We pose here a question, whether in the case of a generalized expansive, does a mapping has a fixed point if it is not one to one?
Theorem 4
Assume that Ω is a nonempty closed subset of a complete metric space W and ϒ is a one to one mapping of Ω into W such that
-
(1)
\(\Omega \subseteq \Upsilon (\Omega )\);
-
(2)
\(cd_{W}(\Upsilon \omega ,\Upsilon \nu )+ad_{W}(\Upsilon \omega ,\omega )+bd_{W}(\Upsilon \nu ,\nu )\geq hd_{W}(\omega ,\nu )\), \(a,b\geq 0\), \(c,h>0\), \(a+b+c< h\).
Thus, there is a unique \(\omega \in \Omega \) such that \(\Upsilon \omega =\omega \).
Proof
Since ϒ is one to one, the inverse of \(\Upsilon :\Omega \longrightarrow \Upsilon (\Omega )\) exists. For \(\upsilon ,\vartheta \in \Upsilon (\Omega )\) there are \(\omega ,\nu \in \Omega \) such that \(\Upsilon \omega =\upsilon \) and \(\Upsilon \nu =\vartheta \), then \(\omega =\Upsilon ^{-1}\upsilon \) and \(\nu =\Upsilon ^{-1}\vartheta \). From (2)
for all \(\upsilon ,\vartheta \in \Upsilon (\Omega )\). Thus,
where \(a^{\prime }+b^{\prime }+c^{\prime }=\frac{a}{h}+\frac{b}{h}+ \frac{c}{h}<1\). Since \(\Omega \subseteq \Upsilon (\Omega )\), therefore \(\Upsilon ^{-1}|_{\Omega }:\Omega \longrightarrow \Omega \) is the Reich contraction. Hence, by [19] there is \(\omega \in \Omega \) such that \(\Upsilon ^{-1}\omega =\omega \) and \(\omega =\Upsilon \omega \). For uniqueness, let \(\omega ,\nu \in \Omega \) such that \(\Upsilon \omega =\omega \) and \(\Upsilon \nu =\nu \). Thus, from (2), \(cd_{W}(\omega ,\nu )\geq hd_{W}(\omega ,\nu )\), which implies that \(\omega =\nu \). □
Corollary 5
Let Ω be a nonempty closed subset of a complete metric space W and ϒ is a mapping of Ω into W such that
-
(1)
\(\Omega \subseteq \Upsilon (\Omega )\);
-
(2)
\(d_{W}(\Upsilon \omega ,\Upsilon \nu )\geq h^{\prime }d_{W}( \omega ,\nu )\), \(h^{\prime }>1\).
Thus, there is a unique \(\omega \in \Omega \) such that \(\Upsilon \omega =\omega \).
Proof
From (2) we deduce that ϒ is one to one. Using the above theorem, we can take \(a=b=0\) and \(h>c>0\) such that \(h^{\prime }=\frac{h}{c}\). Thus, there is a unique \(\omega \in \Omega \) such that \(\Upsilon \omega =\omega \). □
Remark 6
The above corollary is Theorem 2.1 in [26] (see also Theorem 2.1 in [25]).
Definition 7
Suppose Ω is a nonempty subset of a Banach space W. Let Ϝ be a mapping of \(\Omega \times \Omega \) into W. Ϝ is called equiexpansive if there exists a constant \(h>1\) such that
for all \((\omega ,\nu )\), \((\omega ,\nu ^{\prime })\) in the domain of Ϝ.
If we define Ϝ by \(\digamma (\omega ,\nu )=\Lambda \omega +B\nu \) where \(B:\Omega \longrightarrow W\) is expansive, then Ϝ is an equiexpansive mapping.
Definition 8
Suppose Ω is a nonempty subset of a Banach space W. Let Ϝ be a mapping of \(\Omega \times \Omega \) into W. Ϝ is called generalized equiexpansive if
for all \((\omega ,\nu )\), \((\omega ,\nu ^{\prime })\) in the domain of Ϝ, \(a,b\geq 0\), \(c,h>0\), \(a+b+c< h\).
Theorem 9
Suppose Ω is a nonempty closed subset of a Banach space W. Let Ϝ be a generalized equiexpansive mapping of \(\Omega \times \Omega \) into W such that \(\Omega \subseteq \digamma (\omega ,\Omega )\) for all \(\omega \in \Omega \) and
-
(1)
For each \(\omega \in \Omega \), \(\digamma (\omega ,\nu )=\digamma (\omega ,\nu ^{\prime })\) yields \(\nu =\nu ^{\prime }\);
-
(2)
\(\Vert \digamma (\omega ,\nu )-\digamma (\omega ^{ \prime },\nu ) \Vert \leq \Vert \omega -\omega ^{\prime } \Vert \) for all \((\omega ,\nu )\), \((\omega ,\nu ^{\prime })\in \Omega \times \Omega \).
Then, there is a unique \(\omega \in \Omega \) such that \(\digamma (\omega ,\omega )=\omega \).
Proof
For \(\omega \in \Omega \), define a mapping H of Ω into W such that \(H(\nu )=\digamma (\omega ,\nu )\). From (1)
Also
and, using (2), H is a one to one function. Thus, (by Theorem 4) there is a unique \(G\omega \in \Omega \) such that \(G\omega =\digamma (\omega ,G\omega ) \). Now,
Simplifying
which yields that G is a contraction mapping of Ω into Ω. Thus, there is a unique \(\omega \in \Omega \) such that \(G\omega =\omega \). Since for this \(\omega \in \Omega \) there is a unique \(G\omega \in \Omega \) such that \(G\omega =\digamma (\omega ,G\omega )\), there is a unique ω satisfying \(\digamma (\omega ,\omega )=\omega \). □
Corollary 10
Suppose Ω is a nonempty closed subset of a Banach space W. Let Ϝ be a mapping of \(\Omega \times \Omega \) into W such that \(\Omega \subseteq \digamma (\omega ,\Omega )\) for all \(\omega \in \Omega \) and
-
(1)
\(c \Vert \digamma (\omega ,\nu )-\digamma (\omega ,\nu ^{ \prime }) \Vert \geq h \Vert \nu -\nu ^{\prime } \Vert \) for all \((\omega ,\nu )\), \((\omega ,\nu ^{\prime })\) in the domain of Ϝ, \(c,h>0\), \(2c< h\);
-
(2)
\(\Vert \digamma (\omega ,\nu )-\digamma (\omega ^{ \prime },\nu ) \Vert \leq \Vert \omega -\omega ^{\prime } \Vert \) for all \((\omega ,\nu )\), \((\omega ,\nu ^{\prime })\in \Omega \times \Omega \).
Then, there is a unique \(\omega \in \Omega \) such that \(\digamma (\omega ,\omega )=\omega \).
Proof
From (1), \(\digamma (\omega ,\nu )=\digamma (\omega ,\nu ^{\prime })\) yields \(\nu =\nu ^{\prime }\). Putting \(a=b=0\) in the generalized equiexpansive condition, used in Theorem 9, we acquire the required result. □
Corollary 11
Suppose Ω is a nonempty closed subset of a Banach space W. Λ and B are mappings of Ω into W such that \(\Omega \subseteq \Lambda \omega +B(\Omega )\) for all \(\omega \in \Omega \) and
-
(1)
\(c \Vert B\nu -B\nu ^{\prime } \Vert +a \Vert \Lambda \omega -(I-B)\nu \Vert +b \Vert \Lambda \omega -(I-B)\nu ^{\prime } \Vert \geq h \Vert \nu -\nu ^{ \prime } \Vert \) for all \((\omega ,\nu )\), \((\omega ,\nu ^{\prime })\) in the domain of Ϝ, \(a,b\geq 0\), \(c,h>0\), \(a+b+c< h\), \(a+c< h-c\);
-
(2)
B is a one to one mapping;
-
(3)
\(\Vert \Lambda \omega -\Lambda \omega ^{\prime } \Vert \leq \Vert \omega -\omega ^{\prime } \Vert \) for all \(\omega ,\omega ^{\prime }\in \Omega \).
Thus, there is a unique \(\omega \in \Omega \) such that \(\Lambda \omega +B\omega =\omega \).
Proof
Define \(\digamma (\omega ,\nu )=\Lambda \omega +B\nu \). Clearly Ϝ is a mapping of \(\Omega \times \Omega \) into W. Also, \(\Omega \subseteq \Lambda \omega +B(\Omega )=\digamma (\omega , \Omega ) \). From (1)
Since B is a one to one mapping, \(B\nu =B\nu ^{\prime }\) implies \(\nu =\nu ^{\prime }\) and hence \(\digamma (\omega ,\nu )=\digamma (\omega ^{\prime },\nu )\) implies \(\nu =\nu ^{\prime }\). Also,
Hence, (by Theorem 9) there is a unique \(\omega \in \Omega \) such that \(\Lambda \omega +B\omega =\omega \). □
Remarkk 11.1
If \(\Lambda =O\) in the above corollary, then we acquire the result like Theorem 4.
Corollary 12
Suppose Ω is a nonempty closed subset of a Banach space W. Λ and B are mappings of Ω into W such that \(\Omega \subseteq \Lambda \omega +B(\Omega )\) for all \(\omega \in \Omega \) and
-
(1)
\(c \Vert B\nu -B\nu ^{\prime } \Vert \geq h \Vert \nu -\nu ^{\prime } \Vert \) for all \((\omega ,\nu )\), \(( \omega ,\nu ^{\prime })\) in the domain of Ϝ, \(c,h>0\), \(2c< h\);
-
(2)
\(\Vert \Lambda \omega -\Lambda \omega ^{\prime } \Vert \leq \Vert \omega -\omega ^{\prime } \Vert \) for all \(\omega ,\omega ^{\prime }\in \Omega \).
Then, there is a unique \(\omega \in \Omega \) such that \(\Lambda \omega +B\omega =\omega \).
Proof
From (1) we deduce that B is one to one. Hence, the result can be obtained by taking \(a=b=0\) in Corollary 11. □
Theorem 13
Suppose Ω is a nonempty closed subset of a Banach space W. Let Ϝ be a mapping of \(\Lambda (\Omega )\times \Omega \) into W such that \(\Omega \subseteq \digamma (\Lambda \omega ,\Omega )\) for all \(\Lambda \omega \in \Lambda (\Omega )\) such that
-
(1)
\(c \Vert \digamma (\Lambda \omega ,\nu )-\digamma ( \Lambda \omega ,\nu ^{\prime }) \Vert +a \Vert \digamma ( \Lambda \omega ,\nu )-\nu \Vert +b \Vert \digamma ( \Lambda \omega ,\nu ^{\prime })-\nu ^{\prime } \Vert \geq h \Vert \nu -\nu ^{\prime } \Vert \) for all \((\omega ,\nu )\), \((\omega ,\nu ^{\prime })\) in the domain of Ϝ, \(a,b\geq 0\), \(c,h>0\), \(a+b+c< h\), \(a+c< h-c\);
-
(2)
For each \(\Lambda \omega \in \Omega \), \(\digamma (\Lambda \omega ,\nu )=\digamma (\Lambda \omega ,\nu ^{ \prime })\) implies \(\nu =\nu ^{\prime }\) for all \(\nu ,\nu ^{\prime }\in \Omega \);
-
(3)
\(\Vert \digamma (\Lambda \omega ,\nu )-\digamma ( \Lambda \omega ^{\prime },\nu ) \Vert \leq \Vert \omega - \omega ^{\prime } \Vert \) for all \((\Lambda \omega ,\nu )\), \(( \Lambda \omega ^{\prime },\nu )\in \Lambda (\Omega )\times \Omega \) and Λ is a mapping of Ω into W.
Then, there is a unique \(\omega \in \Omega \) such that \(\digamma (\Lambda \omega ,\omega )=\omega \).
Proof
For \(\Lambda \omega \in \Lambda (\Omega )\), define a mapping H of Ω into W such that \(H(\nu )=\digamma (\Lambda \omega ,\nu )\). From (1)
Also,
and, using (2), H is a one to one function. Thus, (by Theorem 4) there is a unique point \(G(\Lambda \omega )\in \Omega \) such that \(G(\Lambda \omega )=\digamma (\Lambda \omega ,G(\Lambda \omega ))\). Now,
Simplifying
which implies that \(G\circ \Lambda \) is a contraction mapping of Ω into Ω and there is a unique \(\omega \in \Omega \) such that \((G\circ \Lambda )\omega =\omega \) or \(G(\Lambda \omega )=\omega \). Also, for \(\Lambda \omega \in \Lambda (\Omega )\) there is a unique \(G(\Lambda \omega )\in \Omega \) such that \(G(\Lambda \omega )=\digamma (\Lambda \omega ,G(\Lambda \omega ))\). Hence, there is a unique ω such that \(\omega = \digamma (\Lambda \omega ,\omega )\). □
Definition 14
([3])
Assume that W̃ is the family of bounded subsets of a Banach space W. A mapping μ of W̃ into \([0,+\infty )\) is called a measure of noncompactness (MNC) if the following properties hold for \(A,B\in \widetilde{W}\).
-
(1)
\(\mu ( A ) =0\), ⇔A is precompact;
-
(2)
\(\mu ( A ) =\mu ( \overline{A} ) \);
-
(3)
\(\mu ( A\cup B ) =\max \{ \mu ( A ) ,\mu ( B ) \}\).
We can also deduce the following properties;
-
(4)
\(A\subseteq B\) implies \(\mu ( A ) \leq \mu ( B ) \);
-
(5)
\(\mu ( A+B ) \leq \mu (A)+\mu ( B ) \).
Definition 15
([26])
Assume that Ω is a subset of a Banach space W and ϒ is a mapping of Ω into W. ϒ is said to be k-set contractive if \(\mu ( \Upsilon (A) ) \leq k\mu ( A ) \) for any bounded subset of A of Ω and ϒ is bounded and continuous.
ϒ is said to be strictly k-set contractive if ϒ is k-set contractive and \(\mu ( \Upsilon (A) ) < k\mu ( A ) \) for all bounded subsets A of Ω with \(\mu ( A ) \neq 0\). ϒ is called a condensing map if ϒ is strictly 1-set contractive.
Theorem 16
Suppose that Ω is a nonempty bounded closed convex subset of a Banach space W. Ϝ is a mapping of \(\Lambda (\Omega )\times \Omega \) into W such that \(\Omega \subseteq \digamma (\Lambda \omega ,\Omega )\) for all \(\Lambda \omega \in \Lambda (\Omega )\) such that
-
(1)
\(c \Vert \digamma (\Lambda \omega ,\nu )-\digamma ( \Lambda \omega ,\nu ^{\prime }) \Vert +a \Vert \digamma ( \Lambda \omega ,\nu )-\nu \Vert +b \Vert \digamma ( \Lambda \omega ,\nu ^{\prime })-\nu ^{\prime } \Vert \geq h \Vert \nu -\nu ^{\prime } \Vert \) for all \((\omega ,\nu )\), \((\omega ,\nu ^{\prime })\) in the domain of Ϝ, \(a,b\geq 0\), \(c,h>0\), \(a+b+c< h\);
-
(2)
For each \(\omega \in \Omega \), \(\digamma (\Lambda \omega ,\nu )=\digamma (\Lambda \omega ,\nu ^{ \prime })\) implies \(\nu =\nu ^{\prime }\) for all \(\nu ,\nu ^{\prime }\in \Omega \).
-
(3)
\(\Vert \digamma (\Lambda \omega ,\nu )-\digamma ( \Lambda \omega ^{\prime },\nu ) \Vert \leq \Vert \Lambda \omega -\Lambda \omega ^{\prime } \Vert \) for all \((\Lambda \omega ,\nu )\), \((\Lambda \omega ,\nu ^{\prime })\in \Lambda (\Omega )\times \Omega \) and Λ is a k-set contractive mapping of Ω into W for \(k<\frac{h-c}{a+c}\).
Then, there is \(\omega \in \Omega \) such that \(\digamma (\Lambda \omega ,\omega )=\omega \).
Proof
For \(\Lambda \omega \in \Omega \), define a mapping H of Ω into W such that \(H(\nu )=\digamma (\Lambda \omega ,\nu )\). From (1)
Also,
and, using (2), H is a one to one function. Thus, (by Theorem 4) there is a unique \(G(\Lambda \omega )\in \Omega \) such that \(G(\Lambda \omega )=\digamma (\Lambda \omega ,G(\Lambda \omega ))\). Now,
Simplifying
which implies that \(G\circ \Lambda \) is a continuous mapping of Ω into Ω. Now,
for all \(N\subseteq \Omega \). By the Sadovskii fixed-point theorem there is \(\omega \in \Omega \) such that \((G\circ \Lambda )\omega =\omega \) or \(G(\Lambda \omega )=\omega \). Now, for \(\Lambda \omega \in \Lambda (\Omega )\) there is a unique \(G(\Lambda \omega )\in \Omega \) such that \(G(\Lambda \omega )=\digamma (\Lambda \omega ,G(\Lambda \omega ))\). Hence, \(\omega =G(\Lambda \omega )=\digamma (\Lambda \omega ,G(\Lambda \omega ))=\digamma (\Lambda \omega ,\omega )\). □
Corollary 17
Suppose that Ω is a nonempty bounded closed convex subset of a Banach space W. Ϝ is a mapping of \(\Lambda (\Omega )\times \Omega \) into W such that \(\Omega \subseteq \digamma (\Lambda \omega ,\Omega )\) for all \(\Lambda \omega \in \Lambda (\Omega )\) such that
-
(1)
\(c \Vert \digamma (\Lambda \omega ,\nu )-\digamma ( \Lambda \omega ,\nu ^{\prime }) \Vert \geq h \Vert \nu - \nu ^{\prime } \Vert \) for all \((\omega ,\nu )\), \((\omega ,\nu ^{ \prime })\) in the domain of Ϝ, \(c,h>0\), \(c< h\);
-
(2)
\(\Vert \digamma (\Lambda \omega ,\nu )-\digamma ( \Lambda \omega ^{\prime },\nu ) \Vert \leq \Vert \Lambda \omega -\Lambda \omega ^{\prime } \Vert \) for all \((\Lambda \omega ,\nu )\), \((\Lambda \omega ^{\prime },\nu )\in \Lambda (\Omega )\times \Omega \) and Λ is a k-set contractive mapping of Ω into W for \(k<\frac{h-c}{c}\).
Then, there is \(\omega \in \Omega \) such that \(\digamma (\Lambda \omega ,\omega )=\omega \).
Proof
From (1), \(\digamma (\Lambda \omega ,\nu )=\digamma (\Lambda \omega ,\nu ^{ \prime })\) implies \(\nu =\nu ^{\prime }\). Putting \(a=b=0\) in Theorem 16, we acquire the required result. □
Corollary 18
Suppose that Ω is a nonempty bounded closed convex subset of a Banach space W. Λ and B are mappings of Ω into W such that \(\Omega \subseteq \Lambda \omega +B(\Omega )\) for all \(\omega \in \Omega \) and
-
(1)
B is a one to one mapping;
-
(2)
\(c \Vert B\nu -B\nu ^{\prime } \Vert +a \Vert \Lambda \omega -(I-B)\nu \Vert +b \Vert \Lambda \omega -(I-B)\nu ^{\prime } \Vert \geq h \Vert \nu -\nu ^{ \prime } \Vert \) for all \((\omega ,\nu )\), \((\omega ,\nu ^{ \prime })\) in the domain of Ϝ, \(a,b\geq 0\), \(c,h>0\), \(a+b+c< h\);
-
(3)
Λ is a k-set contractive mapping of Ω into W for \(k<\frac{h-c}{a+c}\). Then, there is \(\omega \in \Omega \) such that \(\digamma (\Lambda \omega ,\omega )=\omega \).
Proof
Define \(\digamma (\Lambda \omega ,\nu )=\Lambda \omega +B\nu \). Clearly Ϝ is a mapping of \(\Lambda (\Omega )\times \Omega \) into W. Also, \(\Omega \subseteq \Lambda \omega +B(\Omega )=\digamma (\Lambda \omega , \Omega )\). From (2)
Since B is a one to one mapping, \(B\nu =B\nu ^{\prime }\) implies \(\nu =\nu ^{\prime }\), and hence \(\digamma (\omega ,\nu )=\digamma (\omega ^{\prime },\nu )\) implies \(\nu =\nu ^{\prime }\). Also,
Hence, (by Theorem 16) there is \(\omega \in \Omega \) such that \(\Lambda \omega +B\omega =\omega \). □
Corollary 19
Suppose Ω is a nonempty bounded closed convex subset of a Banach space W. Λ and B are mappings of Ω into W such that
-
(1)
\(\Omega \subseteq \Lambda \omega +B(\Omega )\) for all \(\omega \in \Omega \);
-
(2)
\(c \Vert B\nu -B\nu ^{\prime } \Vert \geq h \Vert \nu -\nu ^{\prime } \Vert \) for all \((\omega ,\nu )\), \(( \omega ,\nu ^{\prime })\) in the domain of Ϝ, \(c,h>0\), \(c< h\);
-
(3)
Λ is a k-set contractive mapping of Ω into W for \(k<\frac{h-c}{c}\).
Then, there is \(\omega \in \Omega \) such that \(\Lambda \omega +B\omega =\omega \).
Proof
(2) implies that B is a one to one mapping. Putting \(a=b=0\) in Corollary 18, we acquire the required result. □
Remarkk 19.1
Corollary 19 is Theorem 2.6 in [26].
Corollary 20
Suppose Ω is a nonempty bounded closed convex subset of a Banach space W. Let Λ and B be the mappings of Ω into W such that
-
(1)
\(\Omega \subseteq \Lambda \omega +B(\Omega )\) for all \(\omega \in \Omega \);
-
(2)
Λ is continuous and \(\Lambda (\Omega )\) lies in a compact subset of W;
-
(3)
\(c \Vert B\nu -B\nu ^{\prime } \Vert \geq h \Vert \nu -\nu ^{\prime } \Vert \) for all \((\omega ,\nu )\), \(( \omega ,\nu ^{\prime })\) in the domain of Ϝ, \(c,h>0\), \(c< h\);
Then, there is \(\omega \in \Omega \) such that \(\Lambda \omega +B\omega =\omega \).
Proof
We show that all the conditions of Corollary 17 are satisfied. Define \(\digamma :\Lambda (\Omega )\times \Omega \longrightarrow W\) by \(\digamma (\Lambda \omega ,\nu )=\Lambda \omega +B\nu \). From (1), since \(\Omega \subseteq \Lambda \omega +B(\Omega )\), therefore \(\Omega \subseteq \Lambda \omega +B(\Omega )=\digamma (\Lambda \omega ,\Omega )\). Now, using (3)
and
Since \(\Lambda (\Omega )\) lies in a compact subset C of W, therefore for every \(N\subseteq \Omega \)
Hence, Λ is a k-set contractive mapping for \(k=0\). Hence, there is \(\omega \in \Omega \) such that \(\omega =\digamma (\Lambda \omega ,\omega )=\Lambda \omega +B\omega \). □
Remarkk 20.1
Corollary 20 is Theorem 2.2 in [26] with the assumption that Ω is a bounded set.
Theorem 20∗
([11]. p. 392)
If \((W,d_{W})\) is a complete metric space, \(0\leq q<1/2\) and \(\Upsilon :W\longrightarrow W\) is a map such that
for all \(\omega ,\nu \in W\). Then, ϒ has a unique fixed point.
Theorem 21
Let Ω be nonempty closed subset of a complete metric space W and ϒ is a one to one mapping of Ω into W such that
-
(1)
\(\Omega \subseteq \Upsilon (\Omega )\);
-
(2)
\(d_{W}(\Upsilon \omega ,\omega )+d_{W}(\Upsilon \nu ,\nu ) \geq hd_{W}(\omega ,\nu )\), \(h>2\).
Then, there is a unique \(\omega \in \Omega \) such that \(\Upsilon \omega =\omega \).
Proof
By Theorem 4 and utilizing the result of Theorem 20∗, we deduce the required result. □
Theorem 22
Suppose that Ω is a nonempty closed subset of a Banach space W. Ϝ is a mapping of \(\Lambda (\Omega )\times \Omega \) into W such that \(\Omega \subseteq \digamma (\Lambda \omega ,\Omega )\) for all \(\Lambda \omega \in \Lambda (\Omega )\) and
-
(1)
\(\Vert \digamma (\Lambda \omega ,\nu )-\nu \Vert + \Vert \digamma (\Lambda \omega ,\nu ^{\prime })-\nu ^{ \prime } \Vert \geq h \Vert \nu -\nu ^{\prime } \Vert \) for all \((\omega ,\nu )\), \((\omega ,\nu ^{\prime })\) in the domain of Ϝ, \(h>2\);
-
(2)
For each \(\omega \in \Omega \), \(\digamma (\Lambda \omega ,\nu )=\digamma (\Lambda \omega ,\nu ^{ \prime })\) implies \(\nu =\nu ^{\prime }\) for all \(\nu ,\nu ^{\prime }\in \Omega \);
-
(3)
\(\Vert \digamma (\Lambda \omega ,\nu )-\digamma ( \Lambda \omega ^{\prime },\nu ) \Vert \leq \Vert \omega - \omega ^{\prime } \Vert \) for all \((\Lambda \omega ,\nu )\), \(( \Lambda \omega ^{\prime },\nu )\in \Lambda (\Omega )\times \Omega \) and Λ is a mapping of Ω into W.
Then, there is a unique \(\omega \in \Omega \) such that \(\digamma (\Lambda \omega ,\omega )=\omega \).
Proof
For \(\Lambda \omega \in \Omega \), define a mapping H of Ω into W such that \(H(\nu )=\digamma (\Lambda \omega ,\nu )\). From (1)
Also,
and, using (2), H is a one to one function. Therefore, there is a unique \(G(\Lambda \omega )\in \Omega \) such that \(G(\Lambda \omega )=\digamma (\Lambda \omega ,G(\Lambda \omega ))\). Now, putting \(\nu =G(\Lambda \omega )\) and \(\nu ^{\prime }=G(\Lambda \omega ^{\prime })\) in (1) we deduce
This gives
which shows that \(G\circ \Lambda \) is a contraction mapping and there is a unique \(\omega \in \Omega \) such that \((G\circ \Lambda )\omega =\omega \) or \(G(\Lambda \omega )=\omega \). Also, for \(\Lambda \omega \in \Lambda (\Omega )\) there is a unique \(G(\Lambda \omega )\in \Omega \) such that \(G(\Lambda \omega )=\digamma (\Lambda \omega ,G(\Lambda \omega ))\). Hence, there is a unique ω such that \(\omega =G(\Lambda \omega )=\digamma (\Lambda \omega ,G(\Lambda \omega ))=\digamma (\Lambda \omega ,\omega )\). □
Theorem 23
Suppose that Ω is a nonempty closed subset of a Banach space W. Ϝ is a mapping of \(\Omega \times \Omega \) into W such that \(\Omega \subseteq \digamma (\omega ,\Omega )\) for all \(\omega \in \Omega \) and
-
(1)
\(\Vert \digamma (\omega ,\nu )-\nu \Vert + \Vert \digamma (\omega ,\nu ^{\prime })-\nu ^{\prime } \Vert \geq h \Vert \nu -\nu ^{\prime } \Vert \) for all \((\omega ,\nu )\), \((\omega ,\nu ^{\prime })\) in the domain of Ϝ, \(h>2\);
-
(2)
For each \(\omega \in \Omega \), \(\digamma (\omega ,\nu )=\digamma (\omega ,\nu ^{\prime })\) implies \(\nu =\nu ^{\prime }\);
-
(3)
\(\Vert \digamma (\omega ,\nu )-\digamma (\omega ^{ \prime },\nu ) \Vert \leq \Vert \omega -\omega ^{\prime } \Vert \) for all \((\omega ,\nu )\), \((\omega ^{\prime },\nu )\in \Omega \times \Omega \).
Thus, there is a unique \(\omega \in \Omega \) such that \(\digamma (\omega ,\omega )=\omega \).
Proof
For \(\omega \in \Omega \), define a mapping H of Ω into W such that \(H(\nu )=\digamma (\omega ,\nu )\). From (1)
Also,
and, using (2), H is a one to one function. Thus, there is a unique \(G\omega \in \Omega \) such that \(G\omega =\digamma (\omega ,G\omega )\). Now, putting \(\nu =G\omega \) and \(\nu ^{\prime }=G\omega ^{\prime }\) in (1) we deduce
which shows that G is a contraction. Hence, (by similar arguments as in Theorem 22) there is a unique \(\omega \in \Omega \) such that \(\digamma (\omega ,\omega )=\omega \). □
Remark 24
Theorems 4 and 9 are extensions of Theorem 2.1 in [26] (see also Theorem 2.1 in [25]).
Remark 25
Theorem 16 is an extension of Theorem 2.6 and Theorem 2.2 in [26].
3 Applications
In this section, first we prove the existence result for the solutions of Cauchy problem (A) given below, with suitable conditions on given functions. Then, we propose a general class of integral equations and using our main Theorem 9, we will discuss the existence of solutions. This integral equations presents many kinds of evolution equations. We summarize the discussion in the form of Theorems at the end.
Problem 26
Consider the following Cauchy problem:
The mild solution of the above problem is given as;
where
and
with \(\mu =\frac{B ( \rho ) }{1-\rho }\) and
here, Δ is a specific path lying on \(E_{ ( \beta ,\varpi ) } \) and \(g\in C ( J\times E,E ) \), \(\Phi \in C ( J,E ) \) where \(J= [ 0,T ] \) for some \(T>0\), see [1]. If \(A\in A^{\rho } ( \beta _{0},\varpi _{0} ) \), thus \(\Vert T_{\rho } ( \sigma ) \Vert \leq \Omega e^{\varpi \sigma }\) and \(\Vert S_{\rho } ( \sigma ) \Vert \leq C_{1}e^{ \varpi \sigma } ( 1+\sigma ^{\rho -1} ) \) for every \(\sigma >0\) and \(\varpi >\varpi _{0}\). Set \(\Omega =\sup_{\sigma >0} \Vert T_{\rho } ( \sigma ) \Vert \) and \(\Omega _{1}= \sup_{\sigma >0}C_{1}e^{\varpi \sigma } ( 1+\sigma ^{\rho -1} ) \) then we obtain
Define \(\digamma :B_{\delta }\times B_{\delta }\rightarrow W\) by
Set \(\min \{ \frac{KG ( 1-\rho ) }{B ( \rho ) \Gamma ( \rho ) }, \frac{\rho G^{2}}{B ( \rho ) } \} =K_{G}\).
Assume that the following conditions hold:
-
(H1)
\(\Vert \int_{0}^{\sigma } \{ ( \sigma -\varrho ) ^{\rho -1}+S_{\rho } ( \sigma -\varrho ) \} \Phi ( \varrho ) ( \upsilon ( \varrho ) -\vartheta ( \varrho ) )\,d\varrho \Vert \geq K_{S} \Vert \upsilon -\upsilon \Vert \) for some \(K_{S}>0\).
-
(H2)
\(\Vert g ( \varrho ,\omega _{1} ( \varrho ) ) -g ( \varrho ,\omega _{2} ( \varrho ) ) \Vert \leq L_{g} \Vert \omega _{1}-\omega _{2} \Vert \) for some \(L_{g}>0\).
-
(H3)
\(( \frac{ \Vert G \Vert }{B ( \rho ) } \Vert \frac{K ( 1-\rho ) }{\Gamma ( \rho ) } \Vert \frac{1}{\rho }+\rho \Vert G \Vert \Omega _{1} ) L_{g}\leq 1\) and \(2< K_{G}K_{S}\),
where \(B_{\delta }\) is a closed ball with radius δ and center at 0 in W.
First, we show that Ϝ satisfies (1) of Corollary 10,
Now, we show that Ϝ satisfies (1) of Corollary 10, consider
Since \(( \frac{ \Vert G \Vert }{B ( \rho ) } \Vert \frac{K ( 1-\rho ) }{\Gamma ( \rho ) } \Vert \frac{1}{\rho }+\rho \Vert G \Vert \Omega _{1} ) L_{g}\leq 1\), therefore Ϝ satisfies (2). All the conditions of Corollary 10 are satisfied to obtain a point \(\gamma \in B_{\delta }\) such that \(\gamma =\digamma ( \gamma ,\gamma ) \), which is the solution of our main problem (A).
Example 27
We take into consideration
where \(\sigma \in J= [ 0,1 ] \), \(\omega \in ( 0,\pi ) \), \(0<\alpha <1\), let \(W=L^{2} ( [ 0,\pi ] ) \) and consider the operator \(A:D ( A ) \subseteq W\rightarrow W\) defined by
with domain
Clearly, A is densely defined in W and is the infinitesimal generator of a resolvent family \(\{ T_{\alpha } ( \sigma ) \} _{\sigma \geq 0}\) on W [20] and let \(\upsilon ,\vartheta \in C ( J,W ) \). Define the operators f by
Clearly,
All the conditions of the above theorem are satisfied to acquire the solution of given controlled problem (P).
Problem 28
More generally, the above solution (B) can be represented by the following integral equation:
or
where \(h:C ( J,\mathbb{R} ) \rightarrow \mathbb{R} \), \(\zeta ,k,\upsilon \in C ( J,\mathbb{R} ) \) and \(g\in C ( J\times \mathbb{R} ,\mathbb{R} ) \). The integral equation (C) and the fixed-point problem \(\omega =\digamma ( \omega ,\omega ) \) are equivalent, where
We assume the following:
-
(C1)
h is injective and there exists \(\eta >0\) such that
$$ \bigl\Vert h ( \upsilon ) -h \bigl( \upsilon ^{\prime } \bigr) \bigr\Vert \geq \eta \bigl\Vert \upsilon -\upsilon ^{ \prime } \bigr\Vert , \quad \text{for all }\upsilon ,\upsilon ^{\prime }\in B_{\delta }. $$ -
(C2)
$$ \bigl\vert g \bigl( \sigma ,\omega ( \sigma ) \bigr) -g \bigl( \sigma ,\omega ^{\prime } ( \sigma ) \bigr) \bigr\vert \leq \bigl\vert \omega ( \sigma ) -\omega ^{ \prime } ( \sigma ) \bigr\vert \quad \text{for all }\omega , \omega ^{\prime }\in B_{\delta }\text{ and }\sigma \in J. $$
-
(C3)
\(a+b+c<2+\eta c\) and \(T ( \mu +\lambda ) \Omega \leq 1\), where \(\Omega =\max \{ \Vert k \Vert , \Vert h \Vert \} \).
We apply Theorem 9, to show that there exists ω such that \(\omega =\digamma ( \omega ,\omega ) \).
For this purpose consider
which implies using (C2)–(C3) that
This shows that condition (2) of Theorem 9 is satisfied. Since h is injective, \(\digamma (\omega ,\upsilon )=\digamma (\omega ,\upsilon ^{\prime })\) implies \(\upsilon =\upsilon ^{\prime }\), which is condition (1) of Theorem 9. Set
Also, as
and
Then, clearly
All the conditions of Theorem 9 are satisfied to obtain \(\omega \in B_{\delta }\) such that \(\omega =\digamma ( \omega ,\omega ) \), which is a solution of (C). We can obtain the following consequences.
In the following example we will use the above theorem and iterative scheme to find the approximate solution of the given integral equation.
Example 29
Consider the following integral equation;
a special kind of the above integral equation (D). Clearly, it satisfies all the conditions of the above theorem for \(t\in [ 0,1 ] \). We have the following iterative sequence
We take an initial guess \(\nu _{0} ( t ) =1+\frac{t^{2}}{2}-\frac{t^{3}}{6}\), after two iterations we have the approximate solution \(\nu _{2} ( t ) \) and exact solution \(\nu ( t ) =t+e^{-t}\) given in Fig. 1. The error is plotted in Fig. 2.
Example 30
Consider the mapping
Then, ϒ is a generalized expansive mapping but not expansive. Being a closed subset of \(\mathbb{R} \) with the usual metric, the set \([ 0,\frac{1}{2} ] \) is complete. Also, ϒ satisfies the following condition:
for \(a=1.1\), \(b=1.1\), \(c=1\) and \(h=3.21>a+b+c\). Figure 3 shows the above inequality (E) holds for different values of k, but note that we can not find, \(h>1\) for \(a=b=0\), to show that ϒ is an expansive mapping. Therefore, ϒ is not an expansive mapping. For \(k=1\) the mapping is neither expansive nor contractive.
Theorem 31
Let ζ, h, k, g be as defined above, and Ϝ is defined in (D). If (C1), (C2) and (C3) are satisfied, there is a solution \(\omega \in C ( J,\mathbb{R} ) \) of integral equation (C).
Remark 32
Comparing equations (B) with (D), we can choose specific values of ζ, h, k, g, in this case, the above theorem also provides the existence of solutions of the evolution equation (A).
4 Conclusion
In this article, we proved some new variants of Krasnoselskii’s fixed-point theorem for equiexpansive and generalized equiexpansive mappings. We consider Ϝ a mapping with domain either \(\Lambda ( \Omega ) \times \Omega \) or \(\Omega \times \Omega \) and range in a Banach space W, where Λ is an operator from Ω into W. The operator equation \(\omega =\digamma ( \Lambda \omega ,\omega ) \) is solved with the assumption that Ϝ is either equiexpansive of generalized equiexpansive. We also apply our main results to obtain the solutions of a general class of integral equations, which represents solutions of many evolution equations of fractional order. Some examples are established to validate the results.
Availability of data and materials
No data is being used from any repository.
References
Aimene, D., Baleanu, D., Seba, D.: Controllability of semilinear impulsive Atangana–Baleanu fractional differential equations with delay. Chaos Solitons Fractals 128, 51–57 (2019)
Ansari, A.H., Kumar, J.M., Saleem, N.: Inverse-C-class function on weak semi compatibility and fixed point theorems for expansive mappings in G-metric spaces. Math. Morav. 24(1), 93–108 (2020)
Ayerbe Toledano, J.M., Dominguez Benavides, T., López Acedo, G.: Measures of Noncompactness in Metric Fixed Point Theory. Oper. Theory Adv. Appl., vol. 99. Birkhäuser, Basel (1997)
Bonsall, F.F., Vedak, K.B.: Lectures on Some Fixed Point Theorems of Functional Analysis. Tata, Bombay (1962)
Bouaouid, M., Hilal, K., Melliani, S.: Sequential evolution conformable differential equations of second order with nonlocal condition. Adv. Differ. Equ. 2019(1), 1 (2019)
Burton, T.A.: A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 11(1), 85–88 (1998)
Chen, Y.Z.: Krasnoselskii-type fixed point theorems using α-concave operators. J. Fixed Point Theory Appl. 22, 52 (2020)
Karakostas, G.L.: An extension of Krasnoselskiĭ’s fixed point theorem for contractions and compact mappings. Topol. Methods Nonlinear Anal. 22(1), 181–191 (2003)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Krasnoselskii, M.A.: Some problems of nonlinear analysis. Am. Math. Soc. Transl. 10(2), 345–409 (1958)
Malkowsky, E., Rakočević, V.: Advanced Functional Analysis. CRC Press, Boca Raton (2019)
Melvin, W.R.: Some extensions of the Krasnoselskii fixed point theorems. J. Differ. Equ. 11(2), 335–348 (1972)
Mohan, R.M., Vijayakumar, V.: New results concerning to approximate controllability of fractional integro-differential evolution equations of order \(1< r<2\). Numer. Methods Partial Differ. Equ. (2020)
Mohan, R.M., Vijayakumar, V., Udhayakumar, R.: Results on the existence and controllability of fractional integro-differential system of order \(1< r<2\) via measure of noncompactness. Chaos Solitons Fractals 139, 110299 (2020)
Nashed, M.Z., Wong, J.S.: Some variants of a fixed point theorem of Krasnoselskii and applications to nonlinear integral equations. J. Math. Mech. 18(8), 767–777 (1969)
Park, S.: Generalizations of the Krasnoselskii fixed point theorem. Nonlinear Anal., Theory Methods Appl. 67(12), 3401–3410 (2007)
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)
Pourhadi, E., Saadati, R., Some, K.Z.: Krasnosel’skii-type fixed point theorems for Meir–Keeler-type mappings. Nonlinear Anal., Model. Control 25(2), 257–265 (2020)
Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14(1), 121–124 (1971)
Shu, X.B., Wang, Q.: The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order \(1<\alpha <2\). Comput. Math. Appl. 64(6), 2100–2110 (2012)
Smart, D.R.: Fixed point theorems. Cup Archive (1980)
Wang, J., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal., Real World Appl. 12(1), 262–272 (2011)
Wardowski, D.: Family of mappings with an equicontractive-type condition. J. Fixed Point Theory Appl. 22, 55 (2020)
Williams, W.K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: A new study on existence and uniqueness of nonlocal fractional delay differential systems of order \(1< r<2\) in Banach spaces. Numer. Methods Partial Differ. Equ. (2020)
Xiang, T.: Notes on expansive mappings and a partial answer to Nirenberg’s problem. Electron. J. Differ. Equ. 2013(02), 1 (2013)
Xiang, T., Yuan, R.: A class of expansive-type Krasnosel’skii fixed point theorems. Nonlinear Anal., Theory Methods Appl. 71(7–8), 3229–3239 (2009)
Xiang, T., Yuan, R.: Critical type of Krasnosel’skii fixed point theorem. Proc. Am. Math. Soc. 139(3), 1033–1044 (2011)
Yeşilkaya, S.S., Aydın, C.: Fixed point results of expansive mappings in metric spaces. Mathematics 8(10), 1800 (2020)
Zhou, Y., Wang, J., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2016)
Acknowledgements
The authors are grateful to the Editor and reviewers.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally and read the final manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Ahmad, N., Mehmood, N. & Akgül, A. Applications of some new Krasnoselskii-type fixed-point results for generalized expansive and equiexpansive mappings. Adv Cont Discr Mod 2022, 30 (2022). https://doi.org/10.1186/s13662-022-03704-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-022-03704-w